0
Research Papers

Effects of Free Surface Evaporation on Water Nanodroplet Wetting Kinetics: A Molecular Dynamics Study

[+] Author and Article Information
Gui Lu

Key Laboratory for Thermal Science and
Power Engineering of MOE,
Tsinghua University,
Beijing 100084, China

Yuan-Yuan Duan

Key Laboratory for Thermal Science and
Power Engineering of MOE,
Tsinghua University,
Beijing 100084, China
e-mail: yyduan@tsinghua.edu.cn

Xiao-Dong Wang

State Key Laboratory of Alternate Electrical Power
System With Renewable Energy Sources,
North China Electric Power University,
Beijing 102206, China
Beijing Key Laboratory of Multiphase Flow and
Heat Transfer for Low Grade Energy,
North China Electric Power University,
Beijing 102206, China
e-mail: wangxd99@gmail.com

1Corresponding author.

Manuscript received November 4, 2013; final manuscript received August 12, 2014; published online May 14, 2015. Assoc. Editor: Yogesh Jaluria.

J. Heat Transfer 137(9), 091001 (May 14, 2015) (6 pages) Paper No: HT-13-1562; doi: 10.1115/1.4030200 History: Received November 04, 2013

The wetting kinetics of a water nanodroplet undergoing evaporation on a heated gold substrate were examined using molecular dynamics (MD) simulations. Various substrate and initial droplet temperatures were used to obtain different evaporation rates. The water molecule absorption–desorption behavior was analyzed in the vicinity of the contact line region to show the microscopic details of the spreading–evaporating droplet. Increasing substrate temperatures greatly affected the dynamic wetting process, while the initial water droplet temperature had very little effect. The effects of droplet size and substrate wettability on the droplet spreading–evaporating process were also examined. The radius versus time curves agree well with molecular kinetics theory (MKT) for spreading without evaporation but differ from MKT when the spreading induced evaporation. The enhancement of the wetting kinetics by the evaporation can be attributed to the reduction of the liquid–vapor surface tension and the increased water molecule motion in the contact line region and in the bulk droplet.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

de Gennes, P. G. , 1985, “Wetting: Statics and Dynamics,” Rev. Mod. Phys., 57(3), pp. 827–863. [CrossRef]
Bonn, D. , Eggers, J. , Indekeu, J. , Meunier, J. , and Rolley, E. , 2009, “Wetting and Spreading,” Rev. Mod. Phys., 81(2), pp. 739–805. [CrossRef]
Oron, A. , Davis, S. H. , and Bankoff, S. G. , 1997, “Long-Scale Evolution of Thin Liquid Films,” Rev. Mod. Phys., 69(3), pp. 931–980. [CrossRef]
Birdi, K. S. , and Vu, D. T. , 1989, “A Study of the Evaporation Rates of Small Water Drops Placed on a Solid Surface,” J. Phys. Chem., 93(9), pp. 3702–3703. [CrossRef]
Sadhal, S. S. , and Plesset, M. S. , 1979, “Effect of Solid Properties and Contact-Angle in Dropwise Condensation and Evaporation,” ASME J. Heat Transfer, 101(1), pp. 48–54. [CrossRef]
Deegan, R. D. , Bakajin, O. , Dupont, T. F. , Huber, G. , Nagel, S. R. , and Wittten, T. A. , 2000, “Contact Line Deposit in an Evaporating Drop,” Phys. Rev. E, 62(1), pp. 756–765. [CrossRef]
Hu, H. , and Larson, R. G. , 2002, “Evaporation of a Sessile Droplet on a Substrate,” J. Phys. Chem. B, 106(6), pp. 1334–1344. [CrossRef]
Bourges-Monnier, C. , and Shanahan, M. E. R. , 1995, “Influence of Evaporation on Contact Angle,” Langmuir, 11(7), pp. 2820–2829. [CrossRef]
Neumann, A. W. , and Tanner, W. , 1970, “The Temperature Dependence of Contact Angles—Polytetrafluoroethylene/n-decane,” J. Colloid Interface Sci., 34(1), pp. 1–8. [CrossRef]
Wang, X. D. , Lee, D. J. , Peng, X. F. , and Lai, J. Y. , 2007, “Spreading Dynamics and Dynamic Contact Angle of Non-Newtonian Fluids,” Langmuir, 23(15), pp. 8042–8047. [CrossRef] [PubMed]
Liang, Z. P. , Wang, X. D. , Duan, Y. Y. , and Min, Q. , 2012, “Energy-Based Model for Capillary Spreading of Power-Law Liquids on a Horizontal Plane,” Colloids Surf., A, 403(5), pp. 155–163. [CrossRef]
Seveno, D. , Dinter, N. , and De Coninck, J. , 2010, “Wetting Dynamics of Drop Spreading. New Evidence for the Microscopic Validity of the Molecular-Kinetic Theory,” Langmuir, 26(18), pp. 14642–14647. [CrossRef] [PubMed]
Joshi, A. S. , and Sun, Y. , 2010, “Wetting Dynamics and Particle Deposition for an Evaporating Colloidal Drop: A Lattice Boltzmann Study,” Phys. Rev. E, 82(18), p. 041401. [CrossRef]
Yan, Y. Y. , and Zu, Y. Q. , 2007, “A Lattice Boltzmann Method for Incompressible Two-Phase Flows on Partial Wetting Surface With Large Density Ratio,” J. Comput. Phys., 227(1), pp. 763–775. [CrossRef]
Attar, E. , and Koerner, C. , 2009, “Lattice Boltzmann Method for Dynamic Wetting Problems,” J. Colloid Interface Sci., 335(1), pp. 84–93. [CrossRef] [PubMed]
Blake, T. D. , Clarke, A. , Coninck, J. D. , and Ruijter, M. J. , 1997, “Contact Angle Relaxation During Droplet Spreading: Comparison Between Molecular Kinetic Theory and Molecular Dynamics,” Langmuir, 13(7), pp. 2164–2166. [CrossRef]
Coninck, J. D. , D’Ortona, U. , Koplik, J. , and Banavar, J. R. , 1995, “Terraced Spreading of Chain Molecules Via Molecular Dynamics,” Phys. Rev. Lett., 76(6), pp. 928–931. [CrossRef]
He, G. , and Hadjiconstantinou, N. G. , 2003, “A Molecular View of Tanner’s Law: Molecular Dynamics Simulation of Droplet Spreading,” J. Fluid Mech., 497, pp. 123–132. [CrossRef]
Yang, J. X. , Koplik, J. , and Banavar, J. R. , 1992, “Terraced Spreading of Simple Liquids on Solid Surfaces,” Phys. Rev. A, 46(12), pp. 7738–7749. [CrossRef] [PubMed]
Coninck, J. D. , and Blake, T. D. , 2008, “Wetting and Molecular Dynamics Simulations of Simple Liquids,” Annu. Rev. Mater. Res., 38, pp. 1–22. [CrossRef]
Lu, G. , Duan, Y.-Y. , Wang, X.-D. , and Lee, D.-J. , 2011, “Internal Flow in Evaporating Droplet on Heated Solid Surface,” Int. J. Heat Mass Transfer, 54(19–20), pp. 4437–4447. [CrossRef]
Bhardwaj, R. , Fang, X.-H. , and Attinger, D. , 2009, “Pattern Formation During the Evaporation of a Colloidal Nanoliter Drop: A Numerical and Experimental Study,” New J. Phys., 11(7), pp. 1–33. [CrossRef]
Strotos, G. , Gavaises, M. , Theodorakakos, A. , and Bergeles, G. , 2008, “Numerical Investigation on the Evaporation of Droplets Depositing on Heated Surfaces at Low Weber Numbers,” Int. J. Heat Mass Transfer, 51(7–8), pp. 1516–1529. [CrossRef]
Huh, C. , and Scriven, L. E. , 1971, “Hydrodynamic Model of Steady Movement of a Solid/Liquid/Fluid Contact Line,” J. Colloid Interface Sci., 35(1), pp. 85–101. [CrossRef]
Chen, W. K. , Koplik, J. , and Kretzschmar, I. , 2013, “Molecular Dynamics Simulations of the Evaporation of Particle-Laden Droplets,” Phys. Rev. E, 87(5), p. 052404. [CrossRef]
Zhang, J. G. , Leroy, F. , and Muller-Plathe, F. , 2013, “Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study,” Langmuir, 29(31), pp. 9770–9782. [CrossRef] [PubMed]
Yang, X. , and Yan, Y. Y. , 2011, “Molecular Dynamics Simulation for Microscope Insight of Water Evaporation on a Heated Magnesium Surface,” Appl. Therm. Eng., 31(5), pp. 640–648. [CrossRef]
Hwang, C. C. , Lee, S. C. , Hsieh, J. Y. , and Huang, F. C. , 1999, “A Study of Temperature Effects on Drop Spreading by the Molecular Dynamics Simulation,” J. Phys. Soc. Jpn., 68(11), pp. 3742–3743. [CrossRef]
Jorgensen, W. L. , Chandrasekhar, J. , Madura, J. D. , Impey, R. W. , and Klein, M. L. , 1983, “Comparison of Simple Potential Functions for Simulating Liquid Water,” J. Chem. Phys., 79(2), pp. 926–935. [CrossRef]
Ryckaert, J. P. , Ciccotti, G. , and Berendsen, H. J. C. , 1977, “Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes,” J. Comput. Phys., 23(3), pp. 327–341. [CrossRef]
Daw, M. S. , Foiles, S. M. , and Baskes, M. I. , 1993, “The Embedded Atom Method: A Review of Theory and Applications,” Mater. Sci. Rep., 9(7–8), pp. 251–310. [CrossRef]
Schravendijk, P. , van der Vegt, N. , Site, L. D. , and Kremer, K. , 2005, “Dual-Scale Modeling of Benzene Adsorption Onto Ni(111) and Au(111) Surfaces in Explicit Water,” ChemPhysChem, 6(9), pp. 1866–1871. [CrossRef] [PubMed]
Plimpton, S. , 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Blake, T. D. , and Haynes, J. M. , 1969, “Kinetics of Liquid/Liquid Displacement,” J. Colloid Interface Sci., 30(3), pp. 421–423. [CrossRef]
Blake, T. D. , 2006, “The Physics of Moving Wetting Lines,” J. Colloid Interface Sci., 299(1), pp. 1–13. [CrossRef] [PubMed]
Adam, N. K. , 1941, The Physics and Chemistry of Surfaces, Oxford University Press, London.
Dean, J. A. , 1967, Lange’s Handbook of Chemistry, 10th ed., McGraw-Hill, New York.

Figures

Grahic Jump Location
Fig. 5

Dynamic wetting radii for various substrate temperatures (Tl = 300 K)

Grahic Jump Location
Fig. 6

Surface tension calculation based on the excess free energy method: (a) water film with two free surfaces and (b) bulk water without free surfaces

Grahic Jump Location
Fig. 4

Spreading and evaporating snapshots (t = 4 ns) for various substrate temperatures

Grahic Jump Location
Fig. 9

Dynamic wetting radii for various initial droplet temperatures (Ts = 363 K)

Grahic Jump Location
Fig. 3

Precursor layer from MD simulations (Tl = 300 K, Ts = 300 K, and t = 1 ns)

Grahic Jump Location
Fig. 2

Spreading radius for limited evaporating spreading (Tl = 300 K and Ts = 300 K): (a) spreading law fitting with R-t and (b) solid–liquid friction coefficient fitting with U-θ

Grahic Jump Location
Fig. 7

Molecular tracing in the vicinity of the contact line region: (a) Ts = 300 K; (b) Ts = 333 K; and (c) Ts = 363 K

Grahic Jump Location
Fig. 8

Replacement portion of dyed molecules shown in Fig. 7

Grahic Jump Location
Fig. 10

Water droplet temperature evolution for various initial temperatures (Ts = 363 K): (a) 4500 water molecules and (b) 9000 water molecules

Grahic Jump Location
Fig. 11

Effects of substrate wettability on dynamic wetting: (a) limited evaporation (Ts = 300 K and Tl = 300 K) and (b) with evaporation (Ts = 363 K and Tl = 300 K)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In