The necessity of conserving both scattered energy and asymmetry factor for ballistic incidence after finite volume method (FVM) or discrete-ordinates method (DOM) discretization is shown. A phase-function normalization technique introduced previously by the present authors is applied to scattering of ballistic incidence in 3D FVM/DOM to improve treatment of anisotropic scattering through reduction of angular false scattering errors. Ultrafast radiative transfer predictions generated using FVM and DOM are compared to benchmark Monte Carlo to illustrate the necessity of ballistic phase-function normalization. Proper ballistic phase-function treatment greatly improves predicted heat fluxes and energy deposition for anisotropic scattering and for situations where accurate numerical modeling is crucial.