0
Research Papers

Bayesian Inference for Parameter Estimation in Transient Heat Transfer Experiments

[+] Author and Article Information
R. Renjith Raj

Assistant Professor
Department of Mechanical Engineering,
Sree Budha College of Engineering,
Alappuzha, Kerala 690529, India
e-mail: renjithrajr@hotmail.com

G. Venugopal

Associate Professor
Department of Mechanical Engineering,
Rajiv Gandhi Institute of Technology,
Kottayam, Kerala 686501, India
e-mail: gvenucet@gmail.com

M. R. Rajkumar

Assistant Professor
Department of Mechanical Engineering,
College of Engineering, Trivandrum Trivandrum,
Kerala 695014, India
e-mail: rajkumar@cet.ac.in

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received May 30, 2014; final manuscript received April 17, 2015; published online August 11, 2015. Assoc. Editor: P.K. Das.

J. Heat Transfer 137(12), 121011 (Aug 11, 2015) (7 pages) Paper No: HT-14-1361; doi: 10.1115/1.4030955 History: Received May 30, 2014

In this study, an inverse heat transfer problem of parameter estimation using Bayesian inference is considered. Single parameter (specific heat of solid material) estimation as well as simultaneous estimation of two parameters (specific heat and emissivity) is done using a methodology combining the Bayesian inference with Markov chain Monte Carlo (MCMC) based sampling method. Computation of posterior probability density function (PPDF), using Bayes formula, is central to the inverse determination of parameters using Bayesian inference approach. Maximum-a-posteriori (MAP) and posterior mean are used to report the values of the estimated parameters and the uncertainties in the estimated parameters are characterized by the variance of the PPDF. The estimated value of specific heat and emissivity is well in agreement with reported value in literature.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Beck, J. V. , and Arnold, K. J. , 1977, Parameter Estimation in Engineering and Science, Wiley Interscience, New York.
Ozisik, M. N. , 2000, Inverse Heat Transfer: Fundamentals and Applications, CRC Press, New York.
Raudenský, M. , Woodbury, K. A. , Kral, J. , and Brezina, T. , 1995, “Genetic Algorithm in Solution of Inverse Heat Conduction Problems,” Numer. Heat Transfer, Part B, 28(3), pp. 293–306. [CrossRef]
Michalewicz, Z. , 1996, Genetic Algorithms + Data Structures = Evolution Programs, Springer, New York.
Verma, S. , and Balaji, C. , 2007, “Multi-Parameter Estimation in Combined Conduction–Radiation From a Plane Parallel Participating Medium Using Genetic Algorithms,” Int. J. Heat Mass Transfer, 50(9), pp. 1706–1714. [CrossRef]
Gosselin, L. , Tye-Gingras, M. , and Mathieu-Potvin, F. , 2009, “Review of Utilization of Genetic Algorithms in Heat Transfer Problems,” Int. J. Heat Mass Transfer, 52(9), pp. 2169–2188. [CrossRef]
Ding, P. , 2012, “Solution of Inverse Convection Heat Transfer Problem Using an Enhanced Particle Swarm Optimization Algorithm,” ASME J. Heat Transfer, 134(1), p. 011702. [CrossRef]
Sawaf, B. , Ozisik, M. , and Jarny, Y. , 1995, “An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic Medium,” Int. J. Heat Mass Transfer, 38(16), pp. 3005–3010. [CrossRef]
Huang, C.-H. , and Jan-Yuan, Y. , 1995, “An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity,” Int. J. Heat Mass Transfer, 38(18), pp. 3433–3441. [CrossRef]
Yang, C.-Y. , 2000, “Determination of the Temperature Dependent Thermophysical Properties From Temperature Responses Measured at Mediums Boundaries,” Int. J. Heat Mass Transfer, 43(7), pp. 1261–1270. [CrossRef]
Deiveegan, M. , Balaji, C. , and Venkateshan, S. , 2006, “Comparison of Various Methods for Simultaneous Retrieval of Surface Emissivities and Gas Properties in Grey Participating Media,” ASME J. Heat Transfer, 128(8), pp. 829–837. [CrossRef]
Venugopal, G. , Deiveegan, M. , Balaji, C. , and Venkateshan, S. , 2008, “Simultaneous Retrieval of Total Hemispherical Emissivity and Specific Heat From Transient Multimode Heat Transfer Experiments,” ASME J. Heat Transfer, 130(6), p. 061601. [CrossRef]
Wang, J. , and Zabaras, N. , 2004, “A Bayesian Inference Approach to the Inverse Heat Conduction Problem,” Int. J. Heat Mass Transfer, 47(17), pp. 3927–3941. [CrossRef]
Wang, J. , and Zabaras, N. , 2005, “Using Bayesian Statistics in the Estimation of Heat Source in Radiation,” Int. J. Heat Mass Transfer, 48(1), pp. 15–29. [CrossRef]
Parthasarathy, S. , and Balaji, C. , 2008, “Estimation of Parameters in Multi-Mode Heat Transfer Problems Using Bayesian Inference–Effect of Noise and a Priori,” Int. J. Heat Mass Transfer, 51(9), pp. 2313–2334. [CrossRef]
Gnanasekaran, N. , and Balaji, C. , 2011, “A Bayesian Approach for the Simultaneous Estimation of Surface Heat Transfer Coefficient and Thermal Conductivity From Steady State Experiments on Fins,” Int. J. Heat Mass Transfer, 54(13), pp. 3060–3068. [CrossRef]
Eckert, E. R. , and Goldstein, R. J. , 1976, Measurements in Heat Transfer, Taylor & Francis, New York.
Fu, T. , and Tan, P. , 2012, “Transient Calorimetric Measurement Methods for Total Hemispherical Emissivity,” ASME J. Heat Transfer, 134(11), pp. 11601–11607. [CrossRef]
Sasaki, S. , Masuda, H. , Higano, M. , and Hishinuma, N. , 1994, “Simultaneous Measurements of Specific Heat and Total Hemispherical Emissivity of Chromel and Alumel by a Transient Calorimetric Technique,” Int. J. Thermophys., 15(3), pp. 547–565. [CrossRef]
Matsumoto, T. , and Ono, A. , 2001, “Hemispherical Total Emissivity and Specific Heat Capacity Measurements by Electrical Pulse-Heating Method With a Brief Steady State,” Meas. Sci. Technol., 12(12), p. 2095. [CrossRef]
Tanda, G. , and Misale, M. , 2006, “Measurement of Total Hemispherical Emittance and Specific Heat of Aluminum and Inconel 718 by a Calorimetric Technique,” ASME J. Heat Transfer, 128(3), pp. 302–306. [CrossRef]
Beck, J. , Blackwell, B. , and St Clair, C. , 1985, Inverse Heat Conduction: Ill-Posed Problems, Wiley-Interscience, New York.
Besag, J. , Green, P. , Higdon, D. , and Mengersen, K. , 1995, “Bayesian Computation and Stochastic Systems,” Stat. Sci., 10(1), pp. 3–41. [CrossRef]
Incropera, F. P. , 2011, Fundamentals of Heat and Mass Transfer, Wiley, Hoboken, NJ.
Churchill, S. W. , and Chu, H. H. S. , 1975, “Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate,” Int. J. Heat Mass Transfer, 18(11), pp. 1323–1329. [CrossRef]
Beck, J. , Blackwell, B. , and Haji-Sheikh, A. , 1996, “Comparison of Some Inverse Heat Conduction Methods Using Experimental Data,” Int. J. Heat Mass Transfer, 39(17), pp. 3649–3657. [CrossRef]
Alifanov, O. M. , and Alifanov, O. M. , 1994, Inverse Heat Transfer Problems, Springer-Verlag, Berlin.
Tikhonov, A. N. , Arsenin, V. I. , and John, F. , 1977, Solutions of Ill-Posed Problems, Winston, Washington, D.C.
Emery, A. , 2001, “Stochastic Regularization for Thermal Problems With Uncertain Parameters,” Inverse Probl. Eng., 9(2), pp. 109–125. [CrossRef]
Andrieu, C. , De Freitas, N. , Doucet, A. , and Jordan, M. I. , 2003, “An Introduction to MCMC for Machine Learning,” Mach. Learn., 50(1–2), pp. 5–43. [CrossRef]
Gilks, W. , Richardson, S. , and Spiegelhalter, D. , 1996, Markov Chain Monte Carlo in Practice, Vol. 486, Chapman and Hall, New York.
Beichl, I. , and Sullivan, F. , 2000, “The Metropolis Algorithm,” Comput. Sci. Eng., 2(1), pp. 65–69. [CrossRef]
Kaye, G. W. C. , and Laby, T. H. , 1921, Tables of Physical and Chemical Constants: and Some Mathematical Functions, Longmans, London.
Singham, J. , 1962, “Tables of Emissivity of Surfaces,” Int. J. Heat Mass Transfer, 5(1), pp. 67–76. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Experimental setup

Grahic Jump Location
Fig. 2

Heater plate assembly

Grahic Jump Location
Fig. 3

PPDF for sample size 5000

Grahic Jump Location
Fig. 4

PPDF for sample size 10,000

Grahic Jump Location
Fig. 5

Error between measured and predicted temperature corresponding to posterior mean estimate

Grahic Jump Location
Fig. 6

PPDF plotted for initial steady-state temperature 336.2 K

Grahic Jump Location
Fig. 7

PPDF plotted for initial steady-state temperature 361.2

Grahic Jump Location
Fig. 8

PPDF plotted for scanning interval 30 s

Grahic Jump Location
Fig. 9

PPDF plotted for scanning interval 10 s

Grahic Jump Location
Fig. 10

PPDF versus heat capacity

Grahic Jump Location
Fig. 11

PPDF versus emissivity

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In