An experimental study of the effect of eccentricity on forced convective heat transfer was conducted for upward flows in vertical, open-ended annular channels with a diameter ratio of 0.61, a length to outer diameter ratio of 18:1, and both internal surfaces heated uniformly. Flows with Reynolds numbers Re = 5450, 10,000, and 27,500 and eccentricities varying from 0 to 0.9 were examined. These results are deemed to be mostly in the forced convection regime with some possible overlap with the mixed convection regime at the lowest Reynolds number considered. This work complements our previous work on natural and mixed convection using the same facility. The effect of eccentricity was not significant at lower eccentricities, but, in highly eccentric cases, the wall temperature in the narrow gap was much higher than in the wide gap and the average heat transfer coefficient was as low as one-fifth of the concentric value. For Re > 10,000, the average Nusselt number for the concentric case was nearly four times higher than the value predicted by the Dittus–Boelter correlation.