Research Papers: Heat Transfer Enhancement

Constructal Vascular Structures With High-Conductivity Inserts for Self-Cooling

[+] Author and Article Information
Erdal Cetkin

Department of Mechanical Engineering,
Izmir Institute of Technology,
Urla, Izmir 35430, Turkey
e-mail: erdalcetkin@iyte.edu.tr

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received November 21, 2014; final manuscript received June 15, 2015; published online July 14, 2015. Assoc. Editor: Oronzio Manca.

J. Heat Transfer 137(11), 111901 (Jul 14, 2015) (6 pages) Paper No: HT-14-1758; doi: 10.1115/1.4030906 History: Received November 21, 2014

In this paper, we show how a heat-generating domain can be cooled with embedded cooling channels and high-conductivity inserts. The volume of cooling channels and high-conductivity inserts is fixed, so is the volume of the heat-generating domain. The maximum temperature in the domain decreases with high-conductivity inserts even though the coolant volume decreases. The locations and the shapes of high-conductivity inserts corresponding to the smallest peak temperatures for different number of inserts are documented, x = 0.6L and D/B = 0.11 with two rectangular inserts. We also document how the length scales of the inserts should be changed as the volume fraction of the coolant volume over the high-conductivity material volume varies. The high-conductivity inserts should be placed nonequidistantly in order to provide the smallest peak temperature in the heat-generating domain. In addition, increasing the number of the inserts after a limit increases the peak temperature, i.e., this limit is eight number of inserts for the given conditions and assumptions. This paper shows that the overall thermal conductance of a heat-generating domain can be increased by embedding high-conductivity material in the solid domain (inverted fins) when the domain is cooled with forced convection, and the summation of high-conductivity material volume and coolant volume is fixed.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Fig. 1

Heat-generating domain cooled by embedded channel in which coolant fluid flow without high-conductivity inserts (top) and with high-conductivity inserts (bottom)

Grahic Jump Location
Fig. 2

(a) The effect of coolant volume fraction on maximum temperature without high-conductivity inserts. (b) The effect of the location of the high-conductivity inserts on maximum temperature. (c) The effect of the shape of the inserts on maximum temperature.

Grahic Jump Location
Fig. 4

The effect of the ratio of coolant volume to high-conductivity material volume on maximum temperature for D/B = 0.125, 0.15, 0.2, and 0.25

Grahic Jump Location
Fig. 3

(a) The effect of Re number on peak temperature with and without high-conductivity inserts. (b) The effect of the location of the high-conductivity inserts on peak temperature with Re = 200.

Grahic Jump Location
Fig. 7

The effect of B/H length scale on maximum temperature with 6, 8, and 10 equidistant high-conductivity inserts

Grahic Jump Location
Fig. 6

The effect of the location of the high-conductivity inserts on T˜max when B/H = 0.4 and φf = φs = 0.05, and the effect of B/H length scale on T˜#1max when the inserts are placed in the domain equidistantly with φf = φs = 0.05

Grahic Jump Location
Fig. 5

The effect of the location of the second level of high-conductivity inserts on maximum temperature when the location of the first level of inserts is fixed




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In