0
Research Papers: Evaporation, Boiling, and Condensation

Mechanistic Considerations for Enhancing Flow Boiling Heat Transfer in Microchannels

[+] Author and Article Information
Satish G. Kandlikar

Mechanical Engineering Department,
Rochester Institute of Technology,
Rochester, NY 14623
e-mail: sgkeme@rit.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received January 13, 2015; final manuscript received September 2, 2015; published online October 13, 2015. Assoc. Editor: Amy Fleischer.

J. Heat Transfer 138(2), 021504 (Oct 13, 2015) (16 pages) Paper No: HT-15-1028; doi: 10.1115/1.4031648 History: Received January 13, 2015; Revised September 02, 2015

Research efforts on flow boiling in microchannels were focused on stabilizing the flow during the early part of the last decade. After achieving that goal through inlet restrictors and distributed nucleation sites, the focus has now shifted on improving its performance for high heat flux dissipation. The recent worldwide efforts described in this paper are aimed at increasing the critical heat flux (CHF) and reducing the pressure drop, with an implicit goal of dissipating 1 kW/cm2 for meeting the high-end target in electronics cooling application. The underlying mechanisms in these studies are identified and critically evaluated for their potential in meeting the high heat flux dissipation goals. Future need to simultaneously increase the CHF and the heat transfer coefficient (HTC) has been identified and hierarchical integration of nanoscale and microscale technologies is deemed necessary for developing integrated pathways toward meeting this objective.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kandlikar, S. G. , 2002, “ Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels,” Exp. Therm. Fluid Sci., 26(2–4), pp. 389–407. [CrossRef]
Hetsroni, G. , Mosyak, A. , Segal, Z. , and Pogrebnyak, E. , 2003, “ Two-Phase Flow Patterns in Parallel Microchannels,” Int. J. Multiphase Flow, 29(3), pp. 341–360. [CrossRef]
Yen, T.-H. , Kasagi, N. , and Suzuki, Y. , 2003, “ Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes,” Int. J. Multiphase Flow, 29(12), pp. 1771–1792. [CrossRef]
Steinke, M. E. , and Kandlikar, S. G. , 2004, “ An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels,” ASME J. Heat Transfer, 126(4), pp. 518–526. [CrossRef]
Balasubramaina, P. , and Kandlikar, S. G. , 2003, “ High-Speed Photographic Observation of Flow Patterns During Flow Boiling in Single Rectangular Minichannel,” ASME Paper No. HT2003-47175.
Hetsroni, G. , Klein, D. , Mosyak, A. , Segal, Z. , and Pogrebnyak, E. , 2004, “ Convective Boiling in Parallel Microchannels,” Microscale Thermophys. Eng., 8(4), pp. 403–421. [CrossRef]
Qu, W. , and Mudawar, I. , 2004, “ Transport Phenomena in Two-Phase Microchannel Heat Sinks,” ASME J. Electron. Packag., 126(2), pp. 213–224. [CrossRef]
Wu, H. Y. , and Cheng, P. , 2003, “ Visualization and Measurements of Periodic Boiling in Silicon Microchannels,” Int. J. Heat Mass Transfer, 46(14), pp. 2603–2614. [CrossRef]
Hetsroni, G. , Mosyak, A. , Pogrebnyak, E. , and Segal, Z. , 2005, “ Explosive Boiling of Water in Parallel Micro-Channels,” Int. J. Multiphase Flow, 31(4), pp. 371–392. [CrossRef]
Bergles, A. E. , and Kandlikar, S. G. , 2005, “ On the Nature of Critical Heat Flux in Microchannels,” ASME J. Heat Transfer, 127(1), pp. 101–107. [CrossRef]
Harirchian, T. , and Garimella, S. V. , 2009, “ Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels,” Int. J. Multiphase Flow, 35(4), pp. 349–362. [CrossRef]
Kandlikar, S. G. , 2004, “ Heat Transfer Mechanisms During Flow Boiling in Microchannels,” ASME J. Heat Transfer, 126(2), pp. 8–16. [CrossRef]
Kandlikar, S. G. , 2002, “ Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Flow Boiling in Minichannel Flow Passages of Compact Evaporators,” Heat Transfer Eng., 23(1), pp. 5–23. [CrossRef]
Kosar, A. , Kuo, C.-J. , and Peles, Y. , 2005, “ Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities,” Int. J. Heat Mass Transfer, 48(23–24), pp. 4867–4886. [CrossRef]
Kandlikar, S. G. , 2012, “ History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review,” ASME J. Heat Transfer, 134(3), p. 034001. [CrossRef]
Peles, Y. , 2012, Contemporary Perspectives on Flow Boiling Instabilities in Microchannels and Minichannels, Begell House, Danbury, CT.
Kandlikar, S. G. , Colin, S. , Peles, Y. , Garimella, S. , Pease, R. F. , Brandner, J. J. , and Tuckerman, D. B. , 2013, “ Heat Transfer in Microchannels: 2012 Status and Research Needs,” ASME J. Heat Transfer, 135(9), p. 091001. [CrossRef]
Bhavanani, S. , Barayanan, V. , Qu, W. , Jensen, M. , Kandlikar, S. , Kim, J. , and Thome, J. , 2014, “ Boiling Augmentation With Micro/Nanostructures Surfaces: Current Status and Research Outlook,” Nanoscale Microscale Thermophys. Eng., 18(3), pp. 197–222. [CrossRef]
Liu, D. , and Garimella, S. V. , 2007, “ Flow Boiling Heat Transfer in Microchannels,” ASME J. Heat Transfer, 129(10), pp. 1321–1332. [CrossRef]
Kandlikar, S. G. , 2013, “ Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer,” Appl. Phys. Lett., 102(5), p. 051611. [CrossRef]
Patil, C. M. , and Kandlikar, S. G. , 2014, “ Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels,” Int. J. Heat Mass Transfer, 79, pp. 816–828. [CrossRef]
Hsu, Y. Y. , 1962, “ On the Size Range of Active Nucleation Cavities on a Heating Surface,” ASME J. Heat Transfer, 84(3), pp. 207–216. [CrossRef]
Kandlikar, S. G. , 2006, “ Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels,” Exp. Therm. Fluid Sci., 30(5), pp. 441–447. [CrossRef]
Kandlikar, S. G. , Willistein, D. A. , and Borrelli, J. , 2005, “ Experimental Evaluation of Pressure Drop Elements and Fabricated Nucleation Sites for Stabilizing Flow Boiling in Minichannels and Microchannels,” ASME Paper No. ICMM2005-75197.
Kandlikar, S. G. , Kuan, W. K. , Willistein, D. A. , and Borrelli, J. , 2006, “ Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites,” ASME J. Heat Transfer, 128(4), pp. 389–396. [CrossRef]
Kuo, C.-J. , and Peles, Y. , 2008, “ Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities,” ASME J. Heat Transfer, 130(7), p. 072402. [CrossRef]
Kosar, A. , Kuo, C.-J. , and Peles, Y. , 2006, “ Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors,” ASME J. Heat Transfer, 130(7), p. 072402.
Krishnamurthy, S. , and Peles, Y. , 2010, “ Flow Boiling Heat Transfer in Micro Pin Fins Entrenched Microchannel,” ASME J. Heat Transfer, 132(4), p. 041007. [CrossRef]
Kosar, A. , and Peles, Y. , 2007, “ Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink,” Int. J. Heat Mass Transfer, 50(5–6), pp. 1018–1034. [CrossRef]
Qu, W. , and Siu-Ho, A. , 2009, “ Experimental Study of Saturated Flow Boiling Heat Transfer in an Array of Staggered Micro-Pin-Fins,” Int. J. Heat Mass Transfer, 52(7–8), pp. 1853–1863. [CrossRef]
Qu, W. , and Siu-Ho, A. , 2009, “ Measurement and Prediction of Pressure Drop in a Two-Phase Micro-Pin-Fin Heat Sink,” Int. J. Heat Mass Transfer, 52(21), pp. 5173–5184. [CrossRef]
Kosar, A. , Ozdemir, M. R. , and Keskinoz, M. , 2010, “ Pressure Drop Across Micro-Pin Heat Sinks Under Unstable Boiling Conditions,” Int. J. Therm. Sci., 49(7), pp. 1253–1263. [CrossRef]
Law, M. , Lee, P. S. , and Balasubramanian, K. , 2014, “ Experimental Investigation of Flow Boiling Heat Transfer in Novel Oblique-Finned Microchannels,” Int. J. Heat Mass Transfer, 76, pp. 419–431. [CrossRef]
Yao, Z. , Lu, Y.-W. , and Kandlikar, S. G. , 2012, “ Fabrication of Nanowires on Orthogonal Surfaces of Microchannels and Their Effect on Pool Boiling,” J. Micromech. Microeng., 22(11), p. 115005. [CrossRef]
Khanikar, V. , Mudawar, I. , and Fisher, T. , 2009, “ Effects of Carbon Nanotube Coating on Flow Boiling in a Microchannel,” Int. J. Heat Mass Transfer, 52(15–16), pp. 3805–3817. [CrossRef]
Li, D. , Wu, G. S. , Wang, W. , Wang, Y. D. , Liu, D. , Zhang, D. C. , Chen, Y. F. , Peterson, G. P. , and Yang, R. , 2012, “ Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires,” Nano Lett., 12(7), pp. 3385–3390. [CrossRef] [PubMed]
Morshed, A. K. M. M. , Yang, F. , Ali, M. Y. , Khan, J. A. , and Li, C. , 2012, “ Enhanced Flow Boiling in a Microchannel With Integration of Nanowires,” Appl. Therm. Eng., 32, pp. 68–75. [CrossRef]
Yang, F. , Dai, X. , Peles, Y. , Cheng, P. , Khan, J. , and Li, C. , 2014, “ Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (I): Characterization of Flow Boiling Heat Transfer,” Int. J. Heat Mass Transfer, 68, pp. 703–715. [CrossRef]
Yang, F. , Dai, X. , Peles, Y. , Cheng, P. , Khan, J. , and Li, C. , 2014, “ Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (I): Reduced Pressure Drop and Enhanced Critical Heat Flux,” Int. J. Heat Mass Transfer, 68, pp. 716–724. [CrossRef]
Inada, S. , Miyasaka, Y. , Sakamoto, S. , and Chandratilleke, G. R. , 1986, “ Liquid-Solid Contact State in Subcooled Pool Transition Boiling System,” ASME J. Heat Transfer, 108(1), pp. 219–221. [CrossRef]
Suzuki, K. , Kokubu, T. , Nakano, M. , Kawamura, H. , Ueno, I. , Shida, H. , and Ogawa, O. , 2005, “ Enhancement of Heat Transfer in Subcooled Flow Boiling With Microbubble Emission,” Exp. Therm. Fluid Sci., 29(7), pp. 827–832. [CrossRef]
Tange, M. , Takagi, S. , Watanabe, M. , and Shoji, M. , 2004, “ Microbubble Emission Boiling in a Microchannel and Minichannel,” ASME Paper No. ICMM2004-2385.
Wang, G. , and Cheng, P. , 2009, “ Subcooled Flow Boiling and Microbubble Emission Boiling Phenomena in a Partially Heated Microchannel,” Int. J. Heat Mass Transfer, 52(1–2), pp. 79–91. [CrossRef]
Das, S. K. , 2006, “ Heat Transfer in Nanofluids–A Review,” Heat Transfer Eng., 27(10), pp. 3–19. [CrossRef]
Wang, X.-Q. , and Majumdar, A. S. , 2007, “ Heat Transfer Characteristics of Nanofluids: A Review,” Int. J. Therm. Sci., 46(1), pp. 1–19. [CrossRef]
Kakac, S. , and Pramuanjaroenkij, A. , 2009, “ Review of Convective Heat Transfer Enhancement With Nanofluids,” Int. J. Heat Mass Transfer, 52(12–14), pp. 3187–3196. [CrossRef]
Das, S. K. , Putra, N. , and Roetzel, W. , 2003, “ Pool Boiling Characteristics of Nano-Fluids,” Int. J. Heat Mass Transfer, 46(5), pp. 851–862. [CrossRef]
Kim, H. D. , Kim, J. , and Kim, M. H. , 2007, “ Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling,” Int. J. Multiphase Flow, 33(7), pp. 691–706. [CrossRef]
Lee, J. , and Mudawar, I. , 2007, “ Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Microchannels,” Int. J. Heat Mass Transfer, 50(3–4), pp. 452–463. [CrossRef]
Vafei, S. , and Wen, D. , 2010, “ Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel,” ASME J. Heat Transfer, 132(10), p. 102404. [CrossRef]
Kim, S. J. , McKrell, T. , Buongiorno, J. , and Hu, L.-W. , 2010, “ Subcooled Flow Boiling Heat Transfer of Dilute Alumina, Zinc Oxide, and Diamond Nanofluids at Atmospheric Pressure,” Nucl. Eng. Des., 240(5), pp. 1186–1194. [CrossRef]
Edel, Z. , and Mukherjee, A. , 2015, “ Flow Boiling Dynamics of Water and Nanofluids in a Single Microchannel at Different Heat Fluxes,” ASME J. Heat Transfer, 137(1), p. 011501. [CrossRef]
Xu, J. , Vaillant, R. , and Attinger, D. , 2010, “ Use of a Porous Membrane for Gas Bubble Removal in Microfluidic Channels: Physical Mechanisms and Design Criteria,” Microfluid. Nanofluid., 9(4–5), pp. 765–772. [CrossRef]
David, M. P. , Miler, J. , Steinebrenner, J. E. , Yang, Y. , Touzelbaev, M. , and Goodson, K. E. , 2011, “ Hydraulic and Thermal Characteristics of a Vapor Venting Two-Phase Microchannel Heat Exchanger,” Int. J. Heat Mass Transfer, 54(25–26), pp. 5504–5516. [CrossRef]
Fazeli, A. , Mortazavi, M. , and Moghaddam, S. , 2015, “ Hierarchical Biphilic Micro/Nanostructures for a New Generation Phase-Change Heat Sink,” Appl. Therm. Eng., 78, pp. 380–386. [CrossRef]
Moghaddam, S. , 2014, personal communication.
Woodcock, C. , Houshmand, F. , Plawsky, J. , Izenson, M. , Hill, R. , Phillips, S. , and Peles, Y. , 2014, “ Piranha Pin-Fins (PPF): Voracious Boiling Heat Transfer by Vapor Venting From Microchannels–System Calibration and Single-Phase Fluid Dynamics,” 14th IEEE ITherm Conference, Orlando, FL, May 27–30, pp. 282–289.
Peles, Y. , 2014, personal correspondence.
Ohadi, M. , Choo, K. , and Cetegen, E. , 2013, “ Forced-Fed Microchannels for High Flux Cooling Applications,” Next Generation Microchannel Heat Exchangers, Springer, New York, pp. 33–65.
Kaya, A. , Ozdemir, M. R. , and Kosar, A. , 2013, “ High Mass Flux Boiling and Critical Heat Flux in Microscale,” Int. J. Heat Mass Transfer, 65, pp. 70–78.
Sykes, D. M. , Cole, G. S. , Staples, D. A. , Kosar, A. , and Bergles, A. E. , 2010, “ Critical Heat Flux in Cooling Channels for Flow-Field Probes,” ASME Paper No. IHTC14-23276.
Balasubramanian, K. , Jagirdar, M. , Lee, P. S. , Teo, C. J. , and Chou, S. K. , 2013, “ Experimental Investigation of Flow Boiling Heat Transfer and Instabilities in Straight Microchannels,” Int. J. Heat Mass Transfer, 66, pp. 655–671. [CrossRef]
Zhu, Y. , Antao, D. S. , Chu, K.-H. , Hendricks, T. J. , and Wang, E. N. , 2014, “ Enhanced Flow Boiling Heat Transfer in Microchannels With Structured Surfaces,” 15th International Heat Transfer Conference, Paper No. IHTC15-9508.
Mukherjee, A. , and Kandlikar, S. G. , 2005, “ Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels,” ASME Paper No. ICNMM2005-75143.
Lu, C. T. , and Pan, C. , 2011, “ Convective Boiling in a Parallel Microchannel Heat Sink With a Diverging Cross Section and Artificial Nucleation Sites,” Exp. Therm. Fluid Sci., 35(5), pp. 810–815. [CrossRef]
Miner, M. J. , Phelan, P. E. , Odom, B. A. , and Ortiz, C. A. , 2013, “ Experimental Measurements of Critical Heat Flux in Expanding Microchannel Arrays,” ASME J. Heat Transfer, 135(10), p. 101501. [CrossRef]
Miner, M. J. , Phelan, P. E. , Odom, B. A. , and Ortiz, C. A. , 2013, “ An Experimental Investigation of Pressure Drop in Expanding Microchannel Arrays,” ASME J. Heat Transfer, 136(3), p. 031502. [CrossRef]
Balasubramanian, K. , Lee, P. S. , Jin, L. W. , Chou, S. K. , Teo, C. J. , and Gao, S. , 2011, “ Experimental Investigation of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels: A Comparative Study,” Int. J. Heat Mass Transfer, 50(12), pp. 2413–2421.
Balasubramanian, K. , Lee, P. S. , Teo, C. J. , and Chou, S. K. , 2013, “ Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels,” Int. J. Heat Mass Transfer, 67, pp. 234–252. [CrossRef]
Kandlikar, S. G. , Widger, T. , Kalani, A. , and Mejia, V. , 2013, “ Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Microchannels,” ASME J. Heat Transfer, 135(6), p. 061401. [CrossRef]
Kandlikar, S. G. , “ Heat Transfer System and Method Incorporating Tapered Flow Field,” U.S. Patent Pending, U.S. Application No. 20140262186.
Kalani, A. , and Kandlikar, S. G. , 2014, “ Evaluation of Pressure Drop Performance During Enhanced Flow Boiling in Open Microchannels With Tapered Manifolds,” ASME J. Heat Transfer, 136(5), p. 051502. [CrossRef]
Kalani, A. , and Kandlikar, S. G. , 2015, “ Flow Patterns and Heat Transfer Mechanisms During Flow Boiling Over Open Microchannels in Tapered Manifold (OMM),” Int. J. Heat Mass Transfer, 89, pp. 494–504. [CrossRef]
Kandlikar, S. G. , 2010, “ Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective,” Int. J. Therm. Sci., 49(7), pp. 1073–1085. [CrossRef]
Patil, C. M. , and Kandlikar, S. G. , 2014, “ Review of the Manufacturing Techniques for Porous Surfaces Used in Enhanced Pool Boiling,” Heat Transfer Eng., 35(10), pp. 887–902. [CrossRef]
Kalani, A. , and Kandlikar, S. G. , “ Heat Dissipation Beyond 1 kW/cm2 Under Flow Boiling With Low Pressure Drop and High Heat Transfer Coefficient,” (unpublished).

Figures

Grahic Jump Location
Fig. 1

The HTC versus the quality in a microchannel under flow boiling of water at an inlet temperature of 22 deg, heat flux expressed in kW/m2 [4]

Grahic Jump Location
Fig. 2

A schematic of the vapor venting microchannel assembly developed by David et al. [54]. (Redrawn from Ref. [54].)

Grahic Jump Location
Fig. 3

The principle of operation for removing vapor bubbles through a hydrophilic membrane by eliminating the liquid inertia forces by Fazeli et al. [55], and by two-phase flow as proposed by Xu et al. [53] and David et al. [54]. (Image courtesy Moghaddam [56].)

Grahic Jump Location
Fig. 4

Pin fins covered by the PTFE membrane and surrounded by liquid supply trenches, with nucleation sites along the fins and channel bottom wall [55]: (a) fins and substrate with nucleation cavity channels and (b) fins covered with hydrophobic membrane for vapor transport. (Images courtesy Moghaddam [56].)

Grahic Jump Location
Fig. 5

The boiling performance of the biphilic micro/nanostructure device with water at different liquid pressures [55]. (Image courtesy Moghaddam [56].)

Grahic Jump Location
Fig. 6

The localized venting from the nucleation sites within “piranha” fins [57]. (Image courtesy Peles [58].)

Grahic Jump Location
Fig. 7

The expanding microchannel geometry to suppress explosive bubble growth and flow reversal [64]: (a) stepped microchannels and (b) diverging microchannels

Grahic Jump Location
Fig. 8

The expanding flow area by progressively removing fins along the flow length by Balasubramanian et al. [68]. Flow direction from the bottom up. All dimensions are in millimeter.

Grahic Jump Location
Fig. 9

Schematic representation of stepped microchannel with a stepwise reduced fin height in the flow direction. (Adapted from Ref. [69].)

Grahic Jump Location
Fig. 10

A schematic of the open microchannels with TM for stable enhanced flow boiling. (Adapted from Kandlikar et al. [70].)

Grahic Jump Location
Fig. 11

(a) The performance of an open microchannel geometry for (a) TM and UM for flow rates of 40 and 225 mL/min [70]. The corresponding mass fluxes (G) for different configurations: UM—for a volumetric flow rate V = 40 mL/min, mass flux G = 305 kg/m2s; and for V = 225 mL/min, G = 1717 kg/m2s; tapered (200 μm) manifold, TM—for V = 40 mL/min, inlet mass flux, Gin = 305 and outlet mass flux Gout = 159 kg/m2s; for V = 225 mL/min, Gin = 1717 and Gout = 896 kg/m2s, CHF was not reached for the TM configurations in this testing, (b) new test results with TM at a flow rate of 80 mL/min for the same microchannel and taper configuration.

Grahic Jump Location
Fig. 12

The spreading of liquid from the corner region to the channel walls with a hydrophilic surface structure (Kandlikar [74])

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In