Technical Brief

Cooling Capacity Figure of Merit for Phase Change Materials

[+] Author and Article Information
Patrick J. Shamberger

Department of Materials Science and Engineering,
Dwight Look College of Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: patrick.shamberger@tamu.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received September 26, 2014; final manuscript received July 20, 2015; published online September 2, 2015. Assoc. Editor: Amy Fleischer.

J. Heat Transfer 138(2), 024502 (Sep 02, 2015) (8 pages) Paper No: HT-14-1644; doi: 10.1115/1.4031252 History: Received September 26, 2014; Revised July 20, 2015

In this paper, a figure of merit for the cooling capacity (FOMq) of phase change materials (PCMs) is defined from the analytical solution of the two-phase Neumann–Stefan problem of melting of a semi-infinite material with a fixed temperature boundary condition (BC). This figure of merit is a function of the thermophysical properties of a PCM and is proportional to the heat transfer across the interface with the surrounding medium in this general case. Thus, it has important implications for design and optimization of PCMs for high heat-flux thermal management applications. FOMq of example low melting point metals are presented which exceed those in common nonmetallic PCMs over the same temperature range by over an order of magnitude.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Economou, J. T. , 2013, “ Electrification of Aircraft Systems: Power and Control,” Proc. Inst. Mech. Eng., Part G, 227(4), p. 577. [CrossRef]
Chan, C. , 2002, “ The State of the Art of Electric and Hybrid Vehicles,” Proc. IEEE, 90(2), pp. 247–275. [CrossRef]
Jankowski, N. R. , and Mccluskey, F. P. , 2014, “ A Review of Phase Change Materials for Vehicle Component Thermal Buffering,” Appl. Energy, 113(C), pp. 1525–1561. [CrossRef]
Raghavan, A. , Luo, Y. , Chandawalla, A. , Papaefthymiou, M. , Pipe, K. P. , Wenisch, T. F. , and Martin, M. M. , 2013, “ Designing for Responsiveness With Computational Sprinting,” IEEE Micro, 33(3), pp. 8–15. [CrossRef]
Raghavan, A. , Emurian, L. , Shao, L. , Papaefthymiou, M. , Pipe, K. P. , Wenisch, T. F. , and Martin, M. M. , 2013, “ Computational Sprinting on a Hardware/Software Testbed,” ACM SIGPLAN Not., 48(4), pp. 155–166. [CrossRef]
Shao, L. , Raghavan, A. , Emurian, L. , Papaefthymiou, M. C. , Wenisch, T. F. , Martin, M. M. , and Pipe, K. P. , 2014, “ On-Chip Phase Change Heat Sinks Designed for Computational Sprinting,” IEEE 30th Annual SEMI-THERM, San Jose, CA, Mar. 9–13, pp. 56–57.
Weinstein, R. D. , Kopec, T. C. , Fleischer, A. S. , D'addio, E. , and Bessel, C. A. , 2008, “ The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics,” ASME J. Heat Transfer, 130(4), p. 042405. [CrossRef]
Mesalhy, O. , Lafdi, K. , Elgafy, A. , and Bowman, K. , 2005, “ Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix,” Energy Convers. Manage., 46(6), pp. 847–867. [CrossRef]
Hu, X. , and Patnaik, S. , 2012, “ Numerical Simulations of Cyclic Melting and Freezing of Phase Change Material in Micro-Foam,” AIAA Paper No. 2012-3183.
Ge, H. , Li, H. , Mei, S. , and Liu, J. , 2013, “ Low Melting Point Liquid Metal as a New Class of Phase Change Material: An Emerging Frontier in Energy Area,” Renewable Sustainable Energy Rev., 21, pp. 331–346. [CrossRef]
Fukuoka, Y. , and Ishizuka, M. , 1991, “ Thermal Analysis of a New High Density Package Cooling Technology Using Low Melting Point Alloys,” Jpn. J. Appl. Phys., 30(6R), pp. 1313–1319. [CrossRef]
Krishnan, S. , Garimella, S. V. , and Kang, S. S. , 2005, “ A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics,” IEEE Trans. Compon. Packag. Technol., 28(2), pp. 281–289. [CrossRef]
Yoo, D.-W. , and Joshi, Y. K. , 2004, “ Energy Efficient Thermal Management of Electronic Components Using Solid-Liquid Phase Change Materials,” IEEE Trans. Device Mater. Reliab., 4(4), pp. 641–649. [CrossRef]
Evans, A. , He, M. , Hutchinson, J. , and Shaw, M. , 2001, “ Temperature Distribution in Advanced Power Electronics Systems and the Effect of Phase Change Materials on Temperature Suppression During Power Pulses,” ASME J. Electron. Packag., 123(3), pp. 211–217. [CrossRef]
Lu, T. , 2000, “ Thermal Management of High Power Electronics With Phase Change Cooling,” Int. J. Heat Mass Transfer, 43(13), pp. 2245–2256. [CrossRef]
Clabes, J. , Friedrich, J. , Sweet, M. , Dilullo, J. , Chu, S. , Plass, D. , Dawson, J. , Muench, P. , Powell, L. , and Floyd, M. , 2004, “ Design and Implementation of the Power5™ Microprocessor,” IEEE International Solid-State Circuits Conference (DAC '04), San Francisco, CA, pp. 56–57.
Choi, J. , Cher, C.-Y. , Franke, H. , Hamann, H. , Weger, A. , and Bose, P. , 2007, “ Thermal-Aware Task Scheduling at the System Software Level,” International Symposium on Low Power Electronics and Design (ISLPED), Portland, OR, pp. 213–218.
Stefan, J. , 1891, “ Über Die Theorie Der Eisbildung, Insbesondere Über Die Eisbildung Im Polarmeere,” Ann. Phys., 278(2), pp. 269–286. [CrossRef]
Weber, H. , and Riemann, B. , 1919, Die Partiellen Differential-Gleichungen Der Mathematischen Physik, Vieweg and Son, Braunschweig, Germany.
Hu, H. , and Argyropoulos, S. A. , 1996, “ Mathematical Modelling of Solidification and Melting: A Review,” Modell. Simul. Mater. Sci. Eng., 4(4), pp. 371–396. [CrossRef]
Carslaw, H. , and Jaeger, J. , 1959, Conduction of Heat in Solids, Clarendon Press, Oxford, UK.
Hale, D. V. , Hoover, M. J. , and O'Neill, M. J. , 1971, “ Phase Change Materials Handbook,” Lockheed Missiles and Space Co., Huntsville, AL, Report No. NASA CR-61363.
Mehling, H. , and Cabeza, L. F. , 2008, Heat and Cold Storage With PCM, Springer, Berlin.
Tong, B. , Tan, Z. , Zhang, J. , and Wang, S. , 2009, “ Thermodynamic Investigation of Several Natural Polyols,” J. Therm. Anal. Calorim., 95(2), pp. 469–475. [CrossRef]
Shamberger, P. J. , and Reid, T. , 2013, “ Thermophysical Properties of Potassium Fluoride Tetrahydrate From (243 to 348) K,” J. Chem. Eng. Data, 58(2), pp. 294–300. [CrossRef]
Shamberger, P. J. , and Reid, T. , 2012, “ Thermophysical Properties of Lithium Nitrate Trihydrate From (253 to 353) K,” J. Chem. Eng. Data, 57(5), pp. 1404–1411. [CrossRef]
Duggin, M. , 1969, “ The Thermal Conductivity of Liquid Gallium,” Phys. Lett. A, 29(8), pp. 470–471. [CrossRef]
Archer, D. G. , 2002, “ The Enthalpy of Fusion of Gallium,” J. Chem. Eng. Data, 47(2), pp. 304–309. [CrossRef]
Archer, D. G. , and Rudtsch, S. , 2003, “ Enthalpy of Fusion of Indium: A Certified Reference Material for Differential Scanning Calorimetry,” J. Chem. Eng. Data, 48(5), pp. 1157–1163. [CrossRef]
Duggin, M. , 1972, “ The Thermal Conductivities of Liquid Lead and Indium,” J. Phys. F: Met. Phys., 2(3), pp. 433–440. [CrossRef]
Grønvold, F. , 1978, “ Heat Capacity of Indium From 300 to 1000 K,” J. Therm. Anal. Calorim., 13(3), pp. 419–428. [CrossRef]
Alchagirov, B. , Mozgovoi, A. , and Khatsukov, A. , 2004, “ The Density of Molten Indium at Temperatures up to 600 K,” High Temp., 42(6), pp. 1003–1005. [CrossRef]
Alchagirov, B. , and Chochaeva, A. , 2000, “ Temperature Dependence of the Density of Liquid Tin,” High Temp., 38(1), pp. 44–48. [CrossRef]
Grønvold, F. , 1993, “ Enthalpy of Fusion and Temperature of Fusion of Indium, and Redetermination of the Enthalpy of Fusion of Tin,” J. Chem. Thermodyn., 25(9), pp. 1133–1144. [CrossRef]
Chen, H. , and Turnbull, D. , 1968, “ The Specific Heat of Tin and Gallium in Their Stable and Undercooled Pure Liquid States,” Acta Metall., 16(3), pp. 369–373. [CrossRef]
Peralta-Martinez, M. , and Wakeham, W. , 2001, “ Thermal Conductivity of Liquid Tin and Indium,” Int. J. Thermophys., 22(2), pp. 395–403. [CrossRef]


Grahic Jump Location
Fig. 1

The system under consideration in the Neumann–Stefan problem at some arbitrary time. Light gray is the liquid phase; darker gray is the solid.

Grahic Jump Location
Fig. 2

Solution to the transcendental equation, (6) and (6′). (a) Solution to the one-region problem (dotted line). For Stl < 1, λ∼Stl (dashed line). (b)–(d) Solutions to the two-region problem, with contours of C1=αs/αl (in most PCM systems, C1∼0.5−2.0). Each subplot illustrates a different ratio C2=Sts/Stl.

Grahic Jump Location
Fig. 3

Normalized heat flux across the wall interface with time into different materials expressing a range of FOMq

Grahic Jump Location
Fig. 4

Temperature profiles in paraffin wax and water system for (a) one-region problem (at t = 50, 100, 200, 400, and 800 s), (b) two-region problem (at t = 50 s). Lwwax  = 175 J/g, Cpwax  = 2.4 J/g/K, ρwax   = 900 g/m3, and kwax  = 0.2 W/m/K; Lwh2o  = 333 J/g, Cph2o = 4.2 J/g/K, ρh2o   = 1000 g/m3, and kh2o   = 0.56 W/m/K. For both substances, the properties of the liquid are assumed to be equal to the properties of the solid.

Grahic Jump Location
Fig. 5

Reduced variation in the figure of merit versus scaled material parameter X/X0 (where X is kl, ρ, Lw, or Cp,l). Each solid black (gray) line is calculated for a different value of Lw (Cp,l), using the representative values shown in Table 1. Exact numerical scaling factors are shown in Table 2 for the case of X/X0 = 2 or ½.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In