Technical Brief

Thermal Conductivity of Self-Assembling Symmetric Block Copolymer Thin Films of Polystyrene-Block-Poly(methyl methacrylate)

[+] Author and Article Information
Matthew C. George

Orem, UT 84057;
Sandia National Laboratories,
Albuquerque, NM 87185
e-mail: mgeorge@moxtek.com

Mark A. Rodriguez, Michael S. Kent

Sandia National Laboratories,
Albuquerque, NM 87185

Geoff L. Brennecka

Metallurgical and Materials Engineering,
Colorado School of Mines,
Golden, CO 80401;
Sandia National Laboratories,
Albuquerque, NM 87185

Patrick E. Hopkins

Department of Mechanical and Aerospace Engineering, University of Virginia,
Charlottesville, VA 22904
e-mail: phopkins@virginia.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 5, 2015; final manuscript received August 13, 2015; published online October 21, 2015. Assoc. Editor: Alan McGaughey.The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States government purposes.

J. Heat Transfer 138(2), 024505 (Oct 21, 2015) (5 pages) Paper No: HT-15-1172; doi: 10.1115/1.4031701 History: Received March 05, 2015; Revised August 13, 2015

The thermal conductivities of both disordered and self-assembled symmetric polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) copolymer films were measured using time-domain thermoreflectance (TDTR). The variation in out-of-plane thermal conductivity with changing block copolymer thickness is similar to that of PMMA polymer brushes and thick spun-cast films. The results suggest that the interfaces between the PS and PMMA, and reorganization of the PS and PMMA chains around these interfaces, do not significantly affect the thermal transport in these PS-b-PMMA films. However, for thin PS-b-PMMA films, the thermal boundary resistances at the sample interfaces limit the thermal transport.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Cahill, D. G. , Braun, P. V. , Chen, G. , Clarke, D. R. , Fan, S. , Goodson, K. E. , Keblinski, P. , King, W. P. , Mahan, G. D. , Majumdar, A. , Maris, H. J. , Phillpot, S. R. , Pop, E. , and Shi, L. , 2014, “ Nanoscale Thermal Transport. II. 2003–2012,” Appl. Phys. Rev., 1(1), p. 011305. [CrossRef]
Cahill, D. G. , Ford, W. K. , Goodson, K. E. , Mahan, G. D. , Majumdar, A. , Maris, H. J. , Merlin, R. , and Phillpot, S. R. , 2003, “ Nanoscale Thermal Transport,” J. Appl. Phys., 93(2), pp. 793–818. [CrossRef]
Cahill, D. G. , 2012, “ Extremes of Heat Conduction—Pushing the Boundaries of the Thermal Conductivity of Materials,” MRS Bull., 37(9), pp. 855–863. [CrossRef]
Duda, J. C. , Hopkins, P. E. , Shen, Y. , and Gupta, M. C. , 2013, “ Exceptionally Low Thermal Conductivities of Films of the Fullerene Derivative PCBM,” Phys. Rev. Lett., 110(1), p. 015902. [CrossRef] [PubMed]
Wang, X. , Ho, V. , Segalman, R. A. , and Cahill, D. G. , 2013, “ Thermal Conductivity of High-Modulus Polymer Fibers,” Macromolecules, 46(12), pp. 4937–4943. [CrossRef]
Shen, S. , Henry, A. , Tong, J. , Zheng, R. , and Chen, G. , 2010, “ Polyethylene Nanofibres With Very High Thermal Conductivities,” Nat. Nanotechnol., 5(4), pp. 251–255. [CrossRef] [PubMed]
Choy, C. L. , Luk, W. H. , and Chen, F. C. , 1978, “ Thermal Conductivity of Highly Oriented Polyethylene,” Polymer, 19(2), pp. 155–162. [CrossRef]
Singh, V. , Bougher, T. L. , Weathers, A. , Cai, Y. , Bi, K. , Pettes, M. T. , McMenamin, S. A. , Lv, W. , Resler, D. P. , Gattuso, T. R. , Altman, D. H. , Sandhage, K. H. , Shi, L. , Henry, A. , and Cola, B. A. , 2014, “ High Thermal Conductivity of Chain-Oriented Amorphous Polythiophene,” Nat. Nanotechnol., 9(5), pp. 384–390. [CrossRef] [PubMed]
Guo, Z. , Lee, D. , Liu, Y. , Sun, F. , Sliwinski, A. , Gao, H. , Burns, P. C. , Huang, L. , and Luo, T. , 2014, “ Tuning the Thermal Conductivity of Solar Cell Polymers Through Side Chain Engineering,” Phys. Chem. Chem. Phys., 16(17), pp. 7764–7771. [CrossRef] [PubMed]
Duda, J. C. , Hopkins, P. E. , Shen, Y. , and Gupta, M. C. , 2013, “ Thermal Transport in Organic Semiconducting Polymers,” Appl. Phys. Lett., 102(25), p. 251912. [CrossRef]
Yorifuji, D. , and Ando, S. , 2010, “ Molecular Structure Dependence of Out-of-Plane Thermal Diffusivities in Polyimide Films: A Key Parameter for Estimating Thermal Conductivity of Polymers,” Macromolecules, 43(18), pp. 7583–7593. [CrossRef]
Jin, Y. , Shao, C. , Kieffer, J. , Falk, M. L. , and Shtein, M. , 2014, “ Spatial Nonuniformity in Heat Transport Across Hybrid Material Interfaces,” Phys. Rev. B, 90(5), p. 054306. [CrossRef]
Tynell, T. , Giri, A. , Gaskins, J. , Hopkins, P. E. , Mele, P. , Miyazaki, K. , and Karppinen, M. , 2014, “ Efficiently Suppressed Thermal Conductivity in ZnO Thin Films Via Periodic Introduction of Organic Layers,” J. Mater. Chem. A, 2(31), pp. 12150–12152. [CrossRef]
Losego, M. D. , Grady, M. E. , Sottos, N. R. , Cahill, D. G. , and Braun, P. V. , 2012, “ Effects of Chemical Bonding on Heat Transport Across Interfaces,” Nat. Mater., 11(6), pp. 502–506. [CrossRef] [PubMed]
Liu, J. , Yoon, B. , Kuhlmann, E. , Tian, M. , Zhu, J. , George, S. M. , Lee, Y.-C. , and Yang, R. , 2014, “ Ultralow Thermal Conductivity of Atomic/Molecular Layer-Deposited Hybrid Organic-Inorganic Zincone Thin Films,” Nano Lett., 13(11), pp. 5594–5599. [CrossRef]
Ong, W.-L. , Majumdar, S. , Malen, J. A. , and McGaughey, A. J. H. , 2014, “ Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays,” J. Phys. Chem. C, 118(14), pp. 7288–7295. [CrossRef]
Ong, W.-L. , Rupich, S. M. , Talapin, D. V. , McGaughey, A. J. H. , and Malen, J. A. , 2013, “ Surface Chemistry Mediates Thermal Transport in Three-Dimensional Nanocrystal Arrays,” Nat. Mater., 12(5), pp. 410–415. [CrossRef] [PubMed]
Jin, Y. , Shao, C. , Kieffer, J. , Pipe, K. P. , and Shtein, M. , 2012, “ Origins of Thermal Boundary Conductance of Interfaces Involving Organic Semiconductors,” J. Appl. Phys., 112(9), p. 093503. [CrossRef]
Marconnet, A. M. , Yamamoto, N. , Panzer, M. A. , Wardle, B. L. , and Goodson, K. E. , 2011, “ Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites With High Packing Density,” ACS Nano, 5(6), pp. 4818–4825. [CrossRef] [PubMed]
Li, Q. , Liu, C. , and Fan, S. , 2009, “ Thermal Boundary Resistances of Carbon Nanotubes in Contact With Metals and Polymers,” Nano Lett., 9(11), pp. 3805–3809. [CrossRef] [PubMed]
Henry, A. , and Chen, G. , 2009, “ Anomalous Heat Conduction in Polyethylene Chains: Theory and Molecular Dynamics Simulations,” Phys. Rev. B, 79(14), p. 144305. [CrossRef]
Liu, J. , and Yang, R. , 2010, “ Tuning the Thermal Conductivity of Polymers With Mechanical Strains,” Phys. Rev. B, 81(17), p. 174122. [CrossRef]
Choy, C. L. , Wong, Y. W. , and Yang, G. W. , 1999, “ Elastic Modulus and Thermal Conductivity of Ultradrawn Polyethylene,” J. Polym. Sci., Part B, 37(23), pp. 3359–3367. [CrossRef]
Choy, C. L. , 1977, “ Thermal Conductivity of Polymers,” Polymer, 18(10), pp. 984–1004. [CrossRef]
Washo, B. D. , and Hansen, D. , 1969, “ Heat Conduction in Linear Amorphous High Polymers: Orientation Anisotropy,” J. Appl. Phys., 40(6), pp. 2423–2427. [CrossRef]
Losego, M. D. , Moh, L. , Arpin, K. A. , Cahill, D. G. , and Braun, P. V. , 2010, “ Interfacial Thermal Conductance in Spun-Cast Polymer Films and Polymer Brushes,” Appl. Phys. Lett., 97(1), p. 011908. [CrossRef]
Kurabayashi, K. , Asheghi, M. , Touzelbaev, M. N. , and Goodson, K. , 1999, “ Measurement of the Thermal Conductivity Anisotropy in Polymide Films,” IEEE J. Microelectromech. Syst., 8(2), pp. 180–191. [CrossRef]
Griffiths, R. A. , Williams, A. , Oakland, C. , Roberts, J. , Vijayaraghavan, A. , and Thomson, T. , 2013, “ Directed Self-Assembly of Block Copolymers for Use in Bit Patterned Media Fabrication,” J. Phys. D: Appl. Phys., 46(50), p. 503001. [CrossRef]
Jeong, S.-J. , Kim, J. Y. , Kim, B. H. , Moon, H.-S. , and Kim, S. O. , 2013, “ Directed Self-Assembly of Block Copolymers for Next Generation Nanolithography,” Mater. Today, 16(12), pp. 468–476. [CrossRef]
PS-b-PMMA Was Obtained From Polymer Source, Inc., With 18 kDa Polystyrene and 18 kDa PMMA Blocks and Mw/Mn of 1.07. Tg for Polystyrene Block was 107 °C and Tg for PMMA Block was 133 °C.
Fredrickson, G. H. , 1987, “ Surface Ordering Phenomena in Block Copolymer Melts,” Macromolecules, 20(10), pp. 2535–2542. [CrossRef]
Hasegawa, H. , and Hashimoto, T. , 1985, “ Morphology of Block Polymers Near a Free Surface,” Macromolecules, 18(3), pp. 589–590. [CrossRef]
Huang, E. , Mansky, P. , Russell, T. P. , Harrison, C. , Chaikin, P. M. , Register, R. A. , Hawker, C. J. , and Mays, J. , 2000, “ Mixed Lamellar Films: Evolution, Commensurability Effects, and Preferential Defect Formation,” Macromolecules, 33(1), pp. 80–88. [CrossRef]
Menelle, A. , Russell, T. P. , Anastasiadia, S. H. , Satija, S. K. , and Majkrzak, C. F. , 1992, “ Ordering of Thin Diblock Copolymer Films,” Phys. Rev. Lett., 68(1), pp. 67–70. [CrossRef] [PubMed]
Russell, T. P. , 1996, “ On the Reflectivity of Polymers: Neutrons and X-Rays,” Physica B, 221(1–4), pp. 267–283. [CrossRef]
Cahill, D. G. , Goodson, K. E. , and Majumdar, A. , 2002, “ Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures,” ASME J. Heat Transfer, 124(2), pp. 223–241. [CrossRef]
Cahill, D. G. , 2004, “ Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance,” Rev. Sci. Instrum., 75(12), pp. 5119–5122. [CrossRef]
Schmidt, A. J. , 2013, “ Pump-Probe Thermoreflectance,” Annu. Rev. Heat Transfer, 16(1), pp. 159–181. [CrossRef]
Schmidt, A. J. , Chen, X. , and Chen, G. , 2008, “ Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance,” Rev. Sci. Instrum., 79(11), p. 114902. [CrossRef] [PubMed]
Hopkins, P. E. , Serrano, J. R. , Phinney, L. M. , Kearney, S. P. , Grasser, T. W. , and Harris, C. T. , 2010, “ Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating,” ASME J. Heat Transfer, 132(8), p. 081302. [CrossRef]
Lide, D. R. , 2008, CRC Handbook for Chemistry and Physics, Internet Version, CRC Press/Taylor and Francis, Boca Raton, FL.
Gaur, U. , and Wunderlich, B. , 1982, “ Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Polystyrene,” J. Phys. Chem. Ref. Data, 11(2), pp. 313–325. [CrossRef]
Assael, M. J. , Botsios, S. , Gialou, K. , and Metaxa, I. N. , 2005, “ Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7,” Int. J. Thermophys., 26(5), pp. 1595–1605. [CrossRef]
Cahill, D. G. , 1990, “ Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method,” Rev. Sci. Instrum., 61(2), pp. 802–808. [CrossRef]
Thomsen, C. , Strait, J. , Vardeny, Z. , Maris, H. J. , Tauc, J. , and Hauser, J. J. , 1984, “ Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett., 53(10), pp. 989–992. [CrossRef]
Thomsen, C. , Grahn, H. T. , Maris, H. J. , and Tauc, J. , 1986, “ Surface Generation and Detection of Phonons by Picosecond Light Pulses,” Phys. Rev. B, 34(6), pp. 4129–4138. [CrossRef]
Lee, H. , 1982, “ Rapid Measurement of the Thermal Conductivity of Polymer Films,” Rev. Sci. Instrum., 53(6), pp. 884–887. [CrossRef]
Hopkins, P. E. , 2013, “ Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance,” ISRN Mech. Eng., 2013, p. 682586. [CrossRef]


Grahic Jump Location
Fig. 1

(a) Block copolymer assembly schematic for the asymmetric wetting condition. (b) and (d) XRR data and modeling. (b) Thick annealed film commensurate with 6.5 lamellar periods (Lo) showing third- and fifth-order Bragg peaks, (c) thick unannealed film (plotted as XRR x qz4 to display the weak high frequency oscillations in the data), (d) and (e) large area AFM deflection mode images (with inset topography images) depicting surface roughness of annealed films commensurate with 1.5 (d) and 6.5 (e) lamellar periods. (f) AFM topography image of spun-cast film before annealing. These AFM images confirm that the films did not dewet and remained conformal after annealing.

Grahic Jump Location
Fig. 2

(a) Schematic of TDTR film stack for assembled PS-b-PMMA sample with 1.5 lamellar period thickness, (b) example of the TDTR data and corresponding fit on the n = 0.5 (−) annealed sample, and (c) out-of-plane thermal conductivity of annealed (filled circles) and amorphous (filled squares) PS-b-PMMA films compared to that of PMMA spun-cast films (open squares) and homopolymer brushes (open circles)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In