0
Technical Brief

Thermal Conductivity of Suspensions Based on Core–Shell Particles

[+] Author and Article Information
G. I. Sukhinin

Kutateladze Institute of Thermophysics,
Novosibirsk 630090, Russia;
Physics Department,
Novosibirsk State University,
Novosibirsk 630090, Russia

M. A. Serebryakova, S. A. Novopashin

Kutateladze Institute of Thermophysics,
Novosibirsk 630090, Russia

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received May 12, 2015; final manuscript received January 9, 2016; published online March 22, 2016. Assoc. Editor: Andrey Kuznetsov.

J. Heat Transfer 138(6), 064501 (Mar 22, 2016) (4 pages) Paper No: HT-15-1334; doi: 10.1115/1.4032735 History: Received May 12, 2015; Revised January 09, 2016

An analytical solution of the problem of the thermal conductivity of a suspension containing core–shell particles was found. Solutions were found under the thickness of the shell tending to zero while the thermal conductivity of the shell was tending to zero and infinity. In the first case, the solution is shown to be equivalent to the solution that takes into account Kapitza interfacial thermal resistance. The role of contact Kapitza resistance in the processes of the thermal conduction of nanofluids is discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chaudhuri, R. G. , and Paria, S. , 2012, “ Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications,” Chem. Rev., 112(4), pp. 2373–2433. [CrossRef] [PubMed]
McGill, S. L. , Cuylear, C. L. , Adolphi, N. L. , Osinski, M. , and Smyth, H. D. C. , 2009, “ Magnetically Responsive Nanoparticles for Drug Delivery Applications Using Low Magnetic Field Strengths,” IEEE Trans. Nanobiosci., 8(1), pp. 33–42. [CrossRef]
Salgueiriño-Maceira, V. , and Correa-Duarte, M. A. , 2007, “ Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications,” Adv. Mater., 19(23), pp. 4131–4144. [CrossRef]
Sharifi, I. , Shokrollahi, H. , and Amiri, S. , 2012, “ Ferrite-Based Magnetic Nanofluids Used in Hyperthermia Applications,” J. Magn. Magn. Mater., 324(6), pp. 903–915. [CrossRef]
Mahmoudi, M. , Sant, S. , Wang, B. , Laurent, S. , and Sen, T. , 2011, “ Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, Surface Modification and Applications in Chemotherapy,” Adv. Drug Delivery Rev., 63, pp. 24–46. [CrossRef]
Xiong, D. , Li, Z. , An, Y. , Ma, R. , and Shi, L. , 2010, “ Novel Au–Pd Bimetallic Core–Shell Nanocomplex and Its Catalytic Activity Modulation,” Colloids Interface Sci., 350(1), pp. 260–267. [CrossRef]
Guchhait, A. , Rath, A. K. , and Pal, A. J. , 2009, “ Hybrid Core–Shell Nanoparticles: Photoinduced Electron-Transfer for Charge Separation and Solar Cell Applications,” Chem. Mater., 21(21), pp. 5292–5299. [CrossRef]
Hayesa, R. , Ahmeda, A. , Edgeb, T. , and Zhanga, H. , 2014, “ Core–Shell Particles: Preparation, Fundamentals and Applications in High Performance Liquid Chromatography,” J. Chromatogr. A, 1357, pp. 36–52. [CrossRef] [PubMed]
Dietrich, S. , Chandra, S. , Georgia, C. , Thomas, S. , Makarov, D. , Schulze, S. , Hietschold, M. , Albrecht, M. , Bahadur, D. , and Lang, H. , 2012, “ Design, Characterization and Magnetic Properties of Fe3O4-Nanoparticle Arrays Coated With PEGylated-Dendrimers,” Mater. Chem. Phys., 132(2), pp. 292–299. [CrossRef]
Scott, D. A. , Lamoureux, A. , and Baliga, B. R. , 2013, “ Modeling and Simulations of Laminar Mixed Convection in a Vertical Pipe Conveying Slurries of a Microencapsulated Phase-Change Material in Distilled Water,” ASME J. Heat Transfer, 135, p. 011013. [CrossRef]
Wu, W. , Bostanci, H. , Chow, L. C. , Hong, Y. , Ding, S. J. , Su, M. , and Kizito, J. P. , 2013, “ Jet Impingement Heat Transfer Using Air-Laden Nanoparticles With Encapsulated Phase Change Materials,” ASME J. Heat Transfer, 135(5), p. 052202. [CrossRef]
Maxwell, J. C. , 1881, A Treatise on Electricity and Magnetism, 2nd ed., Clarendon, London, p. 435.
Choi, S. U. S. , 1995, “ Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Developments and Applications of non-Newtonian Flows, Vol. 231, American Society of Mechanical Engineers, New York, pp. 99–105.
Buongiorno, J. , Venerus, D. C. , Prabhat, N. , McKrell, T. , Townsend, J. , Christianson, R. , Tolmachev, Y. V. , Keblinski, P. , Hu, L. , Alvarado, J. L. , Bang, I. C. , Bishnoi, S. W. , Bonetti, M. , Botz, F. , Cecere, A. , Chang, Y. , Chen, G. , Chen, H. , Chung, S. J. , Chyu, M. K. , Das, S. K. , Di Paola, R. , Ding, Y. , Dubois, F. , Dzido, G. , Eapen, J. , Escher, W. , Funfschilling, D. , Galand, Q. , Gao, J. , Gharagozloo, P. E. , Goodson, K. E. , Gutierrez, J. G. , Hong, H. , Horton, M. , Hwang, K. S. , Iorio, C. S. , Jang, S. P. , Jarzebski, A. B. , Jiang, Y. , Jin, L. , Kabelac, S. , Kamath, A. , Kedzierski, M. A. , Kieng, L. G. , Kim, C. , Kim, J. , Kim, S. , Lee, S. H. , Leong, K. C. , Manna, I. , Michel, B. , Ni, R. , Patel, H. E. , Philip, J. , Poulikakos, D. , Reynaud, C. , Savino, R. , Singh, P. K. , Song, P. , Sundararajan, T. , Timofeeva, E. , Tritcak, T., Turanov, A. N. , Van Vaerenberg, S. , Wen, D. , Witharana, S. , Yang, C. , Yeh, W. , Zhao, X. , and Zhou, S. , 2009, “ A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p. 094312. [CrossRef]
Kapitza, P. L. , 1941, “ The Study of Heat Transfer on Helium II,” J. Phys. (USSR), 4, pp. 181–211.
Cahill, D. G. , Ford, W. K. , Goodson, K. E. , Mahan, G. D. , Majundar, A. , Maris, H. J. , Merlin, R. , and Phillpot, S. R. , 2003, “ Nanoscale Heat Transfer,” J. Appl. Phys., 93(2), pp. 793–818. [CrossRef]
Serebryakova, M. A. , Dimov, S. V. , Bardakhanov, S. P. , and Novopashin, S. A. , 2015, “ Thermal Conductivity, Viscosity and Rheology of a Suspension Based on Al2O3 Nanoparticles and Mixture of 90% Ethylene Glycol and 10% Water,” Int. J. Heat Mass Transfer, 83, pp. 187–191. [CrossRef]
Landau, L. D. , and Lifshitz, E. M. , 1987, Fluid Mechanics, 2nd ed., Pergamon Press, Oxford, UK, p. 539.
Nan, C.-W. , Birringer, R. , Clarke, D. R. , and Gleiter, H. , 1997, “ Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp. 6692–6699. [CrossRef]
Lyeo, H.-K. , and Cahill, D. G. , 2006, “ Thermal Conductance of Interfaces Between Highly Dissimilar Materials,” Phys. Rev. B, 73(14), p. 144301. [CrossRef]
Ge, Z. B. , Cahill, D. G. , and Braun, P. V. , 2006, “ Thermal Conductance of Hydrophilic and Hydrophobic Interfaces,” Phys. Rev. Lett., 96(18), p. 186101. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The influence of the particle shell on the thermal conductivity of a suspension at φ = 0.1 and (a/b)3 = 0.5

Grahic Jump Location
Fig. 2

The influence of thermal conductivity and the thickness of the shell on the thermal conductivity of a suspension when φ = 0.1 and α = 100

Grahic Jump Location
Fig. 3

The effect of contact Kapitza resistance on the thermal conductivity of a nanofluid for aluminum oxide nanoparticles in water

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In