0
Research Papers: Evaporation, Boiling, and Condensation

Flow-Pattern Based Heat Transfer Correlations for Stable Flow Boiling in Micro/Minichannels

[+] Author and Article Information
Zan Wu

Department of Energy Sciences,
Lund University,
Lund SE-22100, Sweden

Bengt Sundén

Department of Energy Sciences,
Lund University,
Lund SE-22100, Sweden
e-mail: bengt.sunden@energy.lth.se

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 10, 2014; final manuscript received September 30, 2015; published online November 17, 2015. Assoc. Editor: Keith Hollingsworth.

J. Heat Transfer 138(3), 031501 (Nov 17, 2015) (9 pages) Paper No: HT-14-1666; doi: 10.1115/1.4031882 History: Received October 10, 2014; Revised September 30, 2015

Flow-pattern based heat transfer correlations for elongated bubbly flow and annular flow in stable flow boiling micro/minichannels were developed separately based on a collected micro/minichannel heat-transfer database by using an improved conventional-to-micro/minichannel threshold Bo = 4 and BoRel0.5 = 200, where Bo is the Bond number and Rel is the liquid Reynolds number. As significant disagreement in experimental trends and heat transfer mechanisms was reported for flow boiling in micro/minichannels in the literature, it is not possible to explain the discrepancy and predict all data points by a single correlation without considering the different flow patterns. The newly developed flow-pattern based predictive tool cannot only present a decent overall accuracy, but also estimate the parametric trends relatively well. Over 95% of the data points can be predicted by the proposed correlations within a ±50% error band for both elongated bubbly flow and annular flow. Therefore, the flow-pattern based correlations can be applied for heat exchanger design to improve the understanding of the underlying heat transfer mechanisms and to guide the development of further enhancement techniques for flow boiling in micro/minichannels.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kandlikar, S. G. , 2012, “ History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review,” ASME J. Heat Transfer, 134(3), p. 034001. [CrossRef]
Kandlikar, S. G. , Colin, S. , Peles, Y. , Garimella, S. , Fabian Pease, R. , Brandner, J. J. , and Tuckerman, D. B. , 2013, “ Heat Transfer in Microchannels—2012 Status and Research Needs,” ASME J. Heat Transfer, 135(9), p. 091001. [CrossRef]
Szczukiewicz, S. , Magnini, M. , and Thome, J. R. , 2014, “ Proposed Models, Ongoing Experiments, and Latest Numerical Simulations of Microchannel Two-Phase Flow Boiling,” Int. J. Multiphase Flow, 59, pp. 84–101. [CrossRef]
Cheng, P. , Wu, H. Y. , and Hong, F. J. , 2007, “ Phase-Change Heat Transfer in Microsystems,” ASME J. Heat Transfer, 129(2), pp. 101–108. [CrossRef]
Cheng, P. , Wang, G. , and Quan, X. , 2009, “ Recent Work on Boiling and Condensation in Microchannels,” ASME J. Heat Transfer, 131(4), p. 043211. [CrossRef]
Wu, Z. , and Sundén, B. , 2014, “ On Further Enhancement of Single-Phase and Flow Boiling Heat Transfer in Micro/Minichannels,” Renewable Sustainable Energy Rev., 40, pp. 11–27. [CrossRef]
Sundén, B. , and Wu, Z. , 2015, “ Advanced Heat Exchangers for Clean and Sustainable Technology,” Handbook of Clean Energy Systems, J. Yan , ed., Wiley, Hoboken, NJ.
Di Marco, P. , 2012, “ Influence of Force Fields and Flow Patterns on Boiling Heat Transfer Performance: A Review,” ASME J. Heat Transfer, 134(3), p. 030801. [CrossRef]
Ghiaasiaan, S. M. , 2008, Two-Phase Flow, Boiling and Condensation in Conventional and Miniature Systems, Cambridge University Press, New York.
Yarin, L. P. , Mosyak, A. , and Hetsroni, G. , 2009, Fluid Flow, Heat Transfer and Boiling in Micro-Channels, Springer-Verlag, Berlin.
Hetsroni, G. , Mosyak, A. , Segal, Z. , and Pogrebnyak, E. , 2003, “ Two-Phase Flow Patterns in Parallel Micro-Channels,” Int. J. Multiphase Flow, 29(3), pp. 341–360. [CrossRef]
Xu, J. L. , Shen, S. , Gan, Y. H. , Li, Y. X. , Zhang, W. , and Su, Q. C. , 2005, “ Transient Flow Pattern Based Microscale Boiling Heat Transfer Mechanisms,” J. Micromech. Microeng., 15(6), pp. 1344–1361. [CrossRef]
Harirchian, T. , and Garimella, S. V. , 2008, “ Flow Patterns During Convective Boiling in Microchannels,” ASME J. Heat Transfer, 130(8), p. 080909. [CrossRef]
Schilder, B. , Man, S. Y. C. , Kasagi, N. , Hardt, S. , and Stephan, P. , 2010, “ Flow Visualization and Local Measurement of Forced Convection Heat Transfer in a Microtube,” ASME J. Heat Transfer, 132(3), p. 031702. [CrossRef]
Kew, P. A. , and Cornwell, K. , 1994, “ Confined Bubble Flow and Boiling in Narrow Spaces,” 10th International Heat Transfer Conference, Vol. 7, pp. 473–478.
Revellin, R. , and Thome, J. R. , 2007, “ A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels,” J. Micromech. Microeng., 17(2), pp. 788–796. [CrossRef]
Wallis, G. B. , 1969, One Dimensional Two Phase Flow, McGraw-Hill, New York.
Kew, P. A. , and Cornwell, K. , 1997, “ Correlations for the Prediction of Boiling Heat Transfer in Small Diameter Channels,” Appl. Therm. Eng., 17(8–10), pp. 705–715. [CrossRef]
Li, W. , and Wu, Z. , 2010, “ A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels,” Int. J. Heat Mass Transfer, 53(9–10), pp. 1967–1976. [CrossRef]
Wu, Z. , and Sundén, B. , 2016, “ Heat Transfer Correlations for Elongated Bubbly Flow in Flow Boiling Micro/Minichannels,” Heat Transfer Eng. (in press).
Li, W. , and Wu, Z. , 2010, “ A General Correlation for Adiabatic Two-Phase Pressure Drop in Micro/Mini-Channels,” Int. J. Heat Mass Transfer, 53(13), pp. 2732–2739. [CrossRef]
Wu, Z. , and Li, W. , 2011, “ A New Predictive Tool for Saturated Critical Heat Flux in Micro/Mini-Channels: Effect of the Heated Length-to-Diameter Ratio,” Int. J. Heat Mass Transfer, 54(13), pp. 2880–2889. [CrossRef]
Harirchian, T. , and Garimella, S. V. , 2010, “ A Comprehensive Flow Regime Map for Microchannel Flow Boiling With Quantitative Transition Criteria,” Int. J. Heat Mass Transfer, 53(13), pp. 2694–2702. [CrossRef]
Ong, C. L. , and Thome, J. R. , 2011, “ Macro-to-Microchannel Transition in Two-Phase Flow: Part 1—Two-Phase Flow Patterns and Film Thickness Measurements,” Exp. Therm. Fluid Sci., 35(1), pp. 37–47. [CrossRef]
Karayiannis, T. G. , Shiferaw, D. , Kenning, D. B. R. , and Wadekar, V. V. , 2010, “ Flow Patterns and Heat Transfer for Flow Boiling in Small to Micro Diameter Tubes,” Heat Transfer Eng., 31(4), pp. 257–275. [CrossRef]
Wadekar, V. V. , 2002, “ Compact Heat Exchangers for Phase Change,” Int. J. Heat Exchangers, 3, pp. 169–120.
Wu, Z. , Sundén, B. , Li, W. , and Wadekar, V. V. , 2013, “ Evaporative Annular Flow in Micro/Minichannels: A Simple Heat Transfer Model,” ASME J. Therm. Sci. Eng. Appl., 5(3), p. 031009. [CrossRef]
Thome, J. R. , Dupont, V. , and Jacobi, A. M. , 2004, “ Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model,” Int. J. Heat Mass Transfer, 47(14–16), pp. 3375–3385. [CrossRef]
Kuo, C. J. , and Peles, Y. , 2008, “ Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities,” ASME J. Heat Transfer, 130(7), p. 072402. [CrossRef]
Muwanga, R. , Hassan, I. , and MacDonald, R. , 2007, “ Characteristics of Flow Boiling Oscillations in Silicon Microchannel Heat Sinks,” ASME J. Heat Transfer, 129(10), pp. 1341–1351. [CrossRef]
Odom, B. A. , Miner, M. J. , Ortiz, C. A. , Sherbeck, J. A. , Prasher, R. S. , and Phelan, P. E. , 2012, “ Microchannel Two-Phase Flow Oscillation Control With an Adjustable Inlet Orifice,” ASME J. Heat Transfer, 134(12), p. 122901. [CrossRef]
Bao, Z. Y. , Fletcher, D. F. , and Haynes, B. S. , 2000, “ Flow Boiling Heat Transfer of Freon R11 and HCFC123 in Narrow Passages,” Int. J. Heat Mass Transfer, 43(18), pp. 3347–3358. [CrossRef]
Lin, S. , Kew, P. A. , and Cornwell, K. , 2001, “ Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube,” Int. J. Refrig., 24(1), pp. 51–56. [CrossRef]
Sumith, B. , Kaminaga, F. , and Matsumura, K. , 2003, “ Saturated Flow Boiling of Water in a Vertical Small Diameter Tube,” Exp. Therm. Fluid Sci., 27(7), pp. 789–801. [CrossRef]
Yen, T. H. , Kasagi, N. , and Suzuki, Y. , 2003, “ Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes,” Int. J. Multiphase Flow, 29(12), pp. 1771–1792. [CrossRef]
Huo, X. , Chen, L. , Tian, Y. S. , and Karayiannis, T. G. , 2004, “ Flow Boiling and Flow Regimes in Small Diameter Tubes,” Appl. Therm. Eng., 24, pp. 1225–1239. [CrossRef]
Wen, D. S. , Yan, Y. , and Kenning, D. B. R. , 2004, “ Saturated Flow Boiling of Water in a Narrow Channel: Time-Averaged Heat Transfer Coefficients and Correlations,” Appl. Therm. Eng., 24(8–9), pp. 1207–1223. [CrossRef]
Saitoh, S. , Daiguji, H. , and Hihara, E. , 2005, “ Effect of Tube Diameter on Boiling Heat Transfer of R-134a in Horizontal Small-Diameter Tubes,” Int. J. Heat Mass Transfer, 48(23–24), pp. 4973–4984. [CrossRef]
Huh, C. , and Kim, M. H. , 2007, “ Pressure Drop, Boiling Heat Transfer and Flow Patterns During Flow Boiling in a Single Microchannel,” Heat Transfer Eng., 28(8–9), pp. 730–737. [CrossRef]
Choi, K. I. , Pamitran, A. S. , and Oh, J. T. , 2007, “ Two-Phase Flow Heat Transfer of CO2 Vaporization in Smooth Horizontal Minichannels,” Int. J. Refrig., 30(5), pp. 767–777. [CrossRef]
Consolini, L. , and Thome, J. R. , 2009, “ Micro-Channel Flow Boiling Heat Transfer of R-134a, R-236fa, and R-245fa,” Microfluid. Nanofluid., 6(6), pp. 731–746. [CrossRef]
In, S. , and Jeong, S. , 2009, “ Flow Boiling Heat Transfer Characteristics of R123 and R134a in a Micro-Channel,” Int. J. Multiphase Flow, 35(11), pp. 987–1000. [CrossRef]
Ong, C. L. , and Thome, J. R. , 2009, “ Flow Boiling Heat Transfer of R134a, R236fa and R245fa in a Horizontal 1.03 mm Circular Channel,” Exp. Therm. Fluid Sci., 33(4), pp. 651–663. [CrossRef]
Pamitran, A. S. , Choi, K. , Oh, J. T. , and Park, K. W. , 2009, “ Two-Phase Flow Heat Transfer of Propane Vaporization in Horizontal Minichannels,” J. Mech. Sci. Technol., 23(3), pp. 599–606. [CrossRef]
Shiferaw, D. , Karayiannis, T. G. , and Kenning, D. B. R. , 2009, “ Flow Boiling in a 1.1 mm Tube With R134a: Experimental Results and Comparison With Model,” Int. J. Therm. Sci., 48(2), pp. 331–341. [CrossRef]
Saisorn, S. , Kaew-On, J. , and Wongwises, S. , 2010, “ Flow Pattern and Heat Transfer Characteristics of R-134a Refrigerant During Flow Boiling in a Horizontal Circular Mini-Channel,” Int. J. Heat Mass Transfer, 53(19–20), pp. 4023–4038. [CrossRef]
Tibirica, C. B. , and Ribatski, G. , 2010, “ Flow Boiling Heat Transfer of R134a and R245fa in a 2.3 mm Tube,” Int. J. Heat Mass Transfer, 53(11–12), pp. 2459–2468. [CrossRef]
Ali, R. , Palm, B. , and Maqbool, M. H. , 2011, “ Flow Boiling Heat Transfer Characteristics of a Minichannel up to Dryout Condition,” ASME J. Heat Transfer, 133(8), p. 081501. [CrossRef]
Copetti, J. B. , Macagnan, M. H. , Zinani, F. , and Kunsler, N. L. F. , 2011, “ Flow Boiling Heat Transfer and Pressure Drop of R-134a in a Mini Tube: An Experimental Investigation,” Exp. Therm. Fluid Sci., 35(4), pp. 636–644. [CrossRef]
Ducoulombier, M. , Colasson, S. , Bonjour, J. , and Haberschill, P. , 2011, “ Carbon Dioxide Flow Boiling in a Single Microchannel—Part II: Heat Transfer,” Exp. Therm. Fluid Sci., 35(4), pp. 597–611. [CrossRef]
Oh, J. T. , Pamitran, A. S. , Choi, K. , and Hrnjak, P. , 2011, “ Experimental Investigation on Two-Phase Flow Boiling Heat Transfer of Five Refrigerants in Horizontal Small Tubes of 0.5, 1.5 and 3.0 mm Inner Diameters,” Int. J. Heat Mass Transfer, 54(9–10), pp. 2080–2088. [CrossRef]
Ozawa, M. , Ami, T. , Umekawa, H. , Matsumoto, R. , and Hara, T. , 2011, “ Forced Flow Boiling of Carbon Dioxide in Horizontal Mini-Channel,” Int. J. Therm. Sci., 50(3), pp. 296–308. [CrossRef]
Saitoh, S. , Dang, C. , Nakamura, Y. , and Hihara, E. , 2011, “ Boiling Heat Transfer of HFO-1234yf Flowing in a Smooth Small-Diameter Horizontal Tube,” Int. J. Refrig., 34(8), pp. 1846–1853. [CrossRef]
Wu, J. , Koettig, T. , Franke, C. , Eisel, T. , Haug, F. , and Bremer, J. , 2011, “ Investigation of Heat Transfer and Pressure Drop of CO2 Two-Phase FOW in a Horizontal Minichannel,” Int. J. Heat Mass Transfer, 54(9–10), pp. 2154–2162. [CrossRef]
Maqbool, M. H. , Palm, B. , and Khodabandeh, R. , 2012, “ Boiling Heat Transfer of Ammonia in Vertical Smooth Minichannels: Experimental Results and Predictions,” Int. J. Therm. Sci., 54, pp. 13–21. [CrossRef]
Tibirica, C. B. , Ribatski, G. , and Thome, J. R. , 2012, “ Flow Boiling Characteristics for R1234ze (E) in 1.0 and 2.2 mm Circular Channels,” ASME J. Heat Transfer, 134(2), p. 020906. [CrossRef]
Copetti, J. B. , Macagnan, M. H. , and Zinani, F. , 2013, “ Experimental Study on R-600a Boiling in 2.6 mm Tube,” Int. J. Refrig., 36(2), pp. 325–334. [CrossRef]
Maqbool, M. H. , Palm, B. , and Khodabandeh, R. , 2013, “ Investigation of Two Phase Heat Transfer and Pressure Drop of Propane in a Vertical Circular Minichannel,” Exp. Therm. Fluid Sci., 46, pp. 120–130. [CrossRef]
Del Col, D. , Bortolin, S. , Torresin, D. , and Cavallini, A. , 2013, “ Flow Boiling of R1234yf in a 1 mm Diameter Channel,” Int. J. Refrig., 36(2), pp. 353–362. [CrossRef]
Pike-Wilson, E. A. , and Karayiannis, T. G. , 2014, “ Flow Boiling of R245fa in 1.1 mm Diameter Stainless Steel, Brass and Copper Tubes,” Exp. Therm. Fluid Sci., 59, pp. 166–183. [CrossRef]
Lee, H. J. , Liu, D. Y. , and Yao, S. C. , 2010, “ Flow Instability of Evaporative Micro-Channels,” Int. J. Heat Mass Transfer, 53(9–10), pp. 1740–1749. [CrossRef]
Dupont, V. , Thome, J. R. , and Jacobi, A. M. , 2004, “ Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database,” Int. J. Heat Mass Transfer, 47(14), pp. 3387–3401. [CrossRef]
Revellin, R. , Dupont, V. , Ursenbacher, T. , Thome, J. R. , and Zun, I. , 2006, “ Characterization of Diabatic Two-Phase Flows in Microchannels: Flow Parameter Results for R-134a in a 0.5 mm Channel,” Int. J. Multiphase Flow, 32(7), pp. 755–774. [CrossRef]
Consolini, L. , and Thome, J. R. , 2010, “ A Heat Transfer Model for Evaporation of Coalescing Bubbles in Micro-Channel Flow,” Int. J. Heat Fluid Flow, 31(1), pp. 115–125. [CrossRef]
Han, Y. , and Shikazono, N. , 2009, “ Measurement of the Liquid Film Thickness in Micro Tube Slug Flow,” Int. J. Heat Fluid Flow, 30(5), pp. 842–853. [CrossRef]
Aussillous, P. , and Quéré, D. , 2000, “ Quick Deposition of a Fluid on the Wall of a Tube,” Phys. Fluids, 12(10), pp. 2367–2371. [CrossRef]
Rouhani, S. Z. , 1969, “ AB Atomenergi,” Internal Report No. AE-RTV 841.
Thome, J. R. , 2004, Engineering Data Book III, Wolverine Tube, Decatur, AL.
Revellin, R. , Haberschill, P. , Bonjour, J. , and Thome, J. R. , 2008, “ Conditions of Liquid Film Dryout During Saturated Flow Boiling in Microchannels,” Chem. Eng. Sci., 63(24), pp. 5795–5801. [CrossRef]
Lazarek, G. M. , and Black, S. H. , 1982, “ Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113,” Int. J. Heat Mass Transfer, 25(7), pp. 945–960. [CrossRef]
Li, W. , and Wu, Z. , 2010, “ A General Correlation for Evaporative Heat Transfer in Micro/Mini-Channels,” Int. J. Heat Mass Transfer, 53(9–10), pp. 1778–1787. [CrossRef]
Mahmoud, M. M. , and Karayiannis, T. G. , 2013, “ Heat Transfer Correlation for Flow Boiling in Small to Micro Tubes,” Int. J. Heat Mass Transfer, 66, pp. 553–574. [CrossRef]
Basu, S. , Ndao, S. , Michna, G. J. , Peles, Y. , and Jensen, M. K. , 2011, “ Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics,” ASME J. Heat Transfer, 133(5), p. 051502. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The conventional-to-micro/minichannel threshold

Grahic Jump Location
Fig. 2

(a) Pair frequency and (b) dimensionless initial film thickness versus vapor quality for R134a, dh = 0.51 mm, G = 309 kg m−2 s−1, q = 20–55 kW m−2, and Tsat = 31 °C

Grahic Jump Location
Fig. 3

Boiling number distribution of the elongated bubbly flow database. The transition Boiling number Bltransition is approximately 0.0005.

Grahic Jump Location
Fig. 4

Heat transfer correlation for annular flow

Grahic Jump Location
Fig. 5

Annular film with interfacial waves [69]

Grahic Jump Location
Fig. 6

Evaluation of the newly developed flow-pattern based correlations: (a) elongated bubbly flow and (b) annular flow

Grahic Jump Location
Fig. 7

Overall comparison of the new correlations, the Lazarek and Black correlation [70], the Kew and Cornwell correlation [18], and the Li and Wu correlation [71] for elongated bubbly flow

Grahic Jump Location
Fig. 8

Overall comparison of the new correlation, the Lazarek and Black correlation [70], the Kew and Cornwell correlation [18], and the Li and Wu correlation [71] for annular flow

Grahic Jump Location
Fig. 9

Parametric-trend analysis of the new flow-pattern based predictive tool: (a) Ong and Thome [43] at Tsat = 31 °C; (b) Shiferaw et al. [45] at Psat = 6 and 8 bar; (c) Ducoulombier et al. [50] at Tsat = 0 °C; and (d) Tibirica et al. [56] at Tsat = 31 °C

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In