Research Papers: Radiative Heat Transfer

Determination of Scattering and Absorption Coefficients of Porous Silica Aerogel Composites

[+] Author and Article Information
Tairan Fu

Key Laboratory for Thermal Science and
Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization
and Reduction Technology,
Department of Thermal Engineering,
Tsinghua University,
Beijing 100084, China
e-mail: trfu@mail.tsinghua.edu.cn

Jiaqi Tang

Key Laboratory for Thermal Science and
Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization
and Reduction Technology,
Department of Thermal Engineering,
Tsinghua University, Beijing 100084, China

Kai Chen, Fan Zhang

Beijing Aerospace Technology Institute,
Beijing 100074, China

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 26, 2015; final manuscript received September 18, 2015; published online November 3, 2015. Assoc. Editor: Zhuomin Zhang.

J. Heat Transfer 138(3), 032702 (Nov 03, 2015) (7 pages) Paper No: HT-15-1228; doi: 10.1115/1.4031734 History: Received March 26, 2015; Revised September 18, 2015

Silica aerogels are porous ultralight materials with exceptional physical properties that are promising materials for thermal insulation applications. This paper theoretically and experimentally investigates the spectral scattering and absorption coefficients of a porous silica aerogel. Silica aerogel samples were prepared with the same compositions and various thicknesses using the sol-gel technique and supercritical drying. The spectral normal-hemispherical transmittances and reflectances of the silica aerogel samples with various thicknesses were measured for wavelengths of 0.38–15 μm. The reflectance and transmittance are higher at short wavelengths than in the infrared region due to the strong scattering and weak absorption at short wavelengths. The thicker samples strongly attenuate the spectral normal-hemispherical transmittance, but have little effect on the spectral normal-hemispherical reflectance. A modified two-flux radiative transfer model was used to analyze the radiation propagation in the silica aerogel with a rough surface morphology and millimeter thicknesses to develop theoretical expressions for the spectral directional-hemispherical reflectance and transmittance. Then, the optical constants, including the absorption coefficient and the scattering coefficient, were determined for wavelengths of 0.38–15 μm based on experimental data by the least-squares algorithm. The results show that when considering the radiation propagation inside the sample, the surface reflection at the air–aerogel interface can be neglected for aerogel thicker than 1.1 mm when the absorbing and scattering effects inside the sample are quite important. The analysis provides valuable data for the optical properties for silica aerogel applications.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Schaefer, D. W. , and Keefer, K. D. , 1986, “ Structure of Random Porous Materials: Silica Aerogel,” Phys. Rev. Lett., 56(20), pp. 2199–2202. [CrossRef] [PubMed]
Fomitchev, D. V. , Trifu, R. , and Gould, G. , 2004, “ Fiber Reinforced Silica Aerogel Composites: Thermal Insulation for High-Temperature Applications,” Engineering, Construction, and Operations in Challenging Environments, Earth and Space, ASCE, Reston, VA, pp. 968–975.
Reim, M. , Reichenauer, G. , Korner, W. , Manara, J. , Arduini-Schuster, M. , Korder, S. , Beck, A. , and Fricke, J. , 2004, “ Silica-Aerogel Granulate-Structural, Optical and Thermal Properties,” J. Non-Cryst. Solids, 350, pp. 358–363. [CrossRef]
Henning, S. , and Svensson, L. , 1981, “ Production of Silica Aerogel,” Phys. Scr., 23, pp. 697–702. [CrossRef]
Gurav, J. L. , Jung, I . K. , Park, H. H. , Kang, E. S. , and Nadargi, D. Y. , 2010, “ Silica Aerogel: Synthesis and Applications,” J. Nanomater., 2010, p. 409310. [CrossRef]
Baetensa, R. , Jelle, B. P. , and Gustavsen, A. , 2011, “ Aerogel Insulation for Building Applications: A State-of-the-Art Review,” Energy Build., 43(4), pp. 761–769. [CrossRef]
Cha, J. , Kim, S. , Park, K. W. , Lee, D. R. , Jo, J. H. , and Kim, S. , 2014, “ Improvement of Window Thermal Performance Using Aerogel Insulation Film for Building Energy Saving,” J. Therm. Anal. Calorim., 116(1), pp. 219–224. [CrossRef]
Lee, K. H. , Kim, S. Y. , and Yoo, K. P. , 1995, “ Low-Density, Hydrophobic Aerogels,” J. Non-Cryst. Solids, 186, pp. 18–22. [CrossRef]
Adachi, I. , Ishii, Y. , Kawai, H. , Kuratani, A. , and Tabata, M. , 2008, “ Study of a Silica Aerogel for a Cherenkov Radiator,” Nucl. Instrum. Methods Phys. Res., Sect. A, 595(1), pp. 180–182. [CrossRef]
Tabata, M. , Adachi, I. , Hatakeyama, Y. , Kawai, H. , Morita, T. , and Nishikawa, K. , 2012, “ Optical and Radiographical Characterization of Silica Aerogel for Cherenkov Radiator,” IEEE Trans. Nucl. Sci., 59(5), pp. 2506–2511. [CrossRef]
Reynolds, J. G. , Coronado, P. R. , and Hrubesh, L. W. , 2001, “ Hydrophobic Aerogels for Oil-Spill Cleanup-Intrinsic Absorbing Properties,” Energy Sources, 23(9), pp. 831–843. [CrossRef]
Boyse, R. A. , and Ko, E. I. , 1996, “ Preparation and Characterization of Zirconia-Phosphate Aerogels,” Catal. Lett., 38(3), pp. 225–230. [CrossRef]
Bedilo, A. F. , and Klabundey, K. J. , 1998, “ Synthesis of Catalytically Active Sulfated Zirconia Aerogels,” J. Catal., 176(2), pp. 448–458. [CrossRef]
Suh, D. J. , Park, T. J. , Han, H. Y. , and Lim, J. C. , 2002, “ Synthesis of High-Surface-Area Zirconia Aerogels With a Well-Developed Mesoporous Texture Using CO2 Supercritical Drying,” Chem. Mater., 14(4), pp. 1452–1454. [CrossRef]
Yusuf, M. M. , Imai, H. , and Hirashima, H. , 2002, “ Preparation of Porous Titania Film by Modified Sol-Gel Method and Its Application to Photocatalyst,” J. Sol-Gel Sci. Technol., 25(1), pp. 65–74. [CrossRef]
Hirashima, H. , Kojima, C. , and Imai, H. , 1997, “ Application of Alumina Aerogels as Catalysts,” J. Sol-Gel Sci. Technol., 8(1), pp. 843–846.
Scheuerpflug, P. , Morper, H. J. , Neubert, G. , and Fricke, J. , 1991, “ Low-Temperature Thermal Transport in Silica Aerogels,” J. Phys. D: Appl. Phys., 24(8), pp. 1395–1403. [CrossRef]
Rettelbach, T. , Sauberlich, J. , Korder, S. , and Fricke, J. , 1995, “ Thermal Conductivity of IR-Opacified Silica Aerogel Powders Between 10 K and 275K,” J. Phys. D: Appl. Phys., 28(3), pp. 581–587. [CrossRef]
Thibault, P. , Prejean, J. J. , and Puech, L. , 1995, “ Silica-Aerogel Thermal Expansion Induced by Submonolayer Helium Adsorption,” Phys. Rev. B, 52(24), pp. 17491–17500. [CrossRef]
Faivre, C. , Bellet, D. , and Dolino, G. , 2000, “ X-Ray Diffraction Investigation of the Low Temperature Thermal Expansion of Porous Silicon,” J. Appl. Phys., 87(5), pp. 2131–2136. [CrossRef]
Spagnol, S. , Lartigue, B. , Trombe, A. , and Despetis, F. , 2009, “ Experimental Investigations on the Thermal Conductivity of Silica Aerogels by a Guarded Thin-Film-Heater Method,” ASME J. Heat Transfer, 131(7), p. 074501. [CrossRef]
Yuan, B. , Ding, S. Q. , Wang, D. D. , Wang, G. , and Li, H. X. , 2012, “ Heat Insulation Properties of Silica Aerogel/Glass Fiber Composites Fabricated by Press Forming,” Mater. Lett., 75, pp. 204–206. [CrossRef]
Wei, G. S. , Liu, Y. S. , Zhang, X. X. , and Du, X. Z. , 2013, “ Radiative Heat Transfer Study on Silica Aerogel and Its Composite Insulation Materials,” J. Non-Cryst. Solids, 362, pp. 231–236. [CrossRef]
Cohen, E. , and Glicksman, L. , 2014, “ Analysis of the Transient Hot-Wire Method to Measure Thermal Conductivity of Silica Aerogel: Influence of Wire Length, and Radiation Properties,” ASME J. Heat Transfer, 136(4), p. 041301. [CrossRef]
Xie, T. , He, Y. L. , Tong, Z. X. , Yan, W. X. , and Xie, X. Q. , 2014, “ Transient Heat Transfer Characteristic of Silica Aerogel Insulating Material Considering Its Endothermic Reaction,” Int. J. Heat Mass Transfer, 68, pp. 633–640. [CrossRef]
Neugebauer, A. , Chen, K. , Tang, A. , Allgeier, A. , Glicksman, L. R. , and Gibson, L. J. , 2014, “ Thermal Conductivity and Characterization of Compacted, Granular Silica Aerogel,” Energy Build., 79, pp. 47–57. [CrossRef]
Gutzov, S. , Danchova, N. , Karakashev, S. I. , Khristov, M. , Ivanova, J. , and Ulbikas, J. , 2014, “ Preparation and Thermal Properties of Chemically Prepared Nanoporous Silica Aerogels,” J. Sol-Gel Sci. Technol., 70(3), pp. 511–516. [CrossRef]
Beck, A. , Caps, R. , and Fricke, J. , 1989, “ Scattering of Visible Light From Silica Aerogels,” J. Phys. D: Appl. Phys., 22(6), pp. 730–734. [CrossRef]
Zeng, J. S. Q. , Greif, R. , Stevens, P. , Ayers, M. , and Hunt, A. , 1996, “ Effective Optical Constants n and k and Extinction Coefficient of Silica Aerogel,” J. Mater. Res., 11(03), pp. 687–693. [CrossRef]
Bellunato, T. , Calvi, M. , Matteuzzi, C. , Musy, M. , Perego, D. L. , and Storaci, B. , 2007, “ Refractive Index Dispersion Law of Silica Aerogel,” Eur. Phys. J. C, 52(3), pp. 759–764. [CrossRef]
Bellunato, T. , Calvi, M. , Matteuzzi, C. , Musy, M. , Perego, D. L. , and Storaci, B. , 2008, “ Refractive Index of Silica Aerogel: Uniformity and Dispersion Law,” Nucl. Instrum. Methods Phys. Res., Sect. A, 595(1), pp. 183–186. [CrossRef]
Beck, A. , Korner, W. , and Fricke, J. , 1994, “ Optical Investigations of Granular Aerogel Fills,” J. Phys. D: Appl. Phys., 27(1), pp. 13–18. [CrossRef]
Wang, P. , Beck, A. , Korner, W. , Scheller, H. , and Fricke, J. , 1994, “ Density and Refractive Index of Silica Aerogels After Low- and High-Temperature Supercritical Drying and Thermal Treatment,” J. Phys. D: Appl. Phys., 27(2), pp. 414–418. [CrossRef]
Lee, H. J. , Bryson, A. C. , and Zhang, Z. M. , 2007, “ Measurement and Modeling of the Emittance of Silicon Wafers With Anisotropic Roughness,” Int. J. Thermophys., 28(3), pp. 918–933. [CrossRef]
Zhao, J. J. , Duan, Y. Y. , Wang, X. D. , Zhang, X. R. , Han, Y. H. , Gao, Y. B. , Lv, Z. H. , Yu, H. T. , and Wang, B. X. , 2013, “ Optical and Radiative Properties of Infrared Opacifier Particles Loaded in Silica Aerogels for High Temperature Thermal Insulation,” Int. J. Therm. Sci., 70, pp. 54–64. [CrossRef]
Fu, T. R. , Tang, J. Q. , Chen, K. , and Zhang, F. , 2015, “ Visible, Near-Infrared and Infrared Optical Properties of Silica Aerogels,” Infrared Phys. Technol., 71, pp. 121–126. [CrossRef]
Zhou, Y. H. , and Zhang, Z. M. , 2003, “ Radiative Properties of Semitransparent Silicon Wafers With Rough Surfaces,” ASME J. Heat Transfer, 125(3), pp. 462–470. [CrossRef]
Lee, H. J. , Lee, B. J. , and Zhang, Z. M. , 2005, “ Modeling the Radiative Properties of Semitransparent Wafers With Rough Surfaces and Thin-Film Coatings,” J. Quant. Spectrosc. Radiat. Transfer, 93, pp. 185–194. [CrossRef]
Dombrovsky, L. , Randrianalisoa, J. , and Baillis, D. , 2006, “ Modified Two-Flux Approximation for Identification of Radiative Properties of Absorbing and Scattering Media From Directional-Hemispherical Measurements,” J. Opt. Soc. Am. A, 23(1), pp. 91–98. [CrossRef]
Dombrovsky, L. A. , Tagne, H. K. , Baillis, D. , and Gremillard, L. , 2007, “ Near-Infrared Radiative Properties of Porous Zirconia Ceramics,” Infrared Phys. Technol., 51(1), pp. 44–53. [CrossRef]
Li, Q. , Lee, B. J. , Zhang, Z. M. , and Allen, D. W. , 2008, “ Light Scattering of Semitransparent Sintered Polytetrafluoroethylene Films,” J. Biomed. Opt., 13(5), p. 054064. [CrossRef] [PubMed]
Eldridge, J. I. , and Spuckler, C. M. , 2008, “ Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings,” J. Am. Ceram. Soc., 91(5), pp. 1603–1611. [CrossRef]
Eldridge, J. I. , Spuckler, C. M. , and Markham, J. R. , 2009, “ Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures,” J. Am. Ceram. Soc., 92(10), pp. 2276–2285. [CrossRef]
Lim, G. , and Kar, A. , 2009, “ Radiative Properties of Thermal Barrier Coatings at High Temperatures,” J. Phys. D: Appl. Phys., 42(15), p. 155412. [CrossRef]
Schöldström, J. , Zimmermann, U. , and Edoff, M. , 2012, “ Determination of the Optical Constants for Cu(In,Ga)Se2 and CuxSe in the IR Region,” J. Phys. D: Appl. Phys., 45(11), p. 115101. [CrossRef]
Zhang, Z. M. , and Wang, L. P. , 2013, “ Measurements and Modeling of the Spectral and Directional Radiative Properties of Micro/Nanostructured Materials,” Int. J. Thermophys., 34(12), pp. 2209–2242. [CrossRef]
Jung, E. , Lee, S. , Roh, S. , Hwang, E. , Lee, J. , Lee, H. , and Hwang, J. , 2014, “ Optical Properties of Graphite Oxide and Reduced Graphite Oxide,” J. Phys. D: Appl. Phys., 47(26), p. 265306. [CrossRef]
Zhang, B. J. , Wang, B. X. , and Zhao, C. Y. , 2014, “ Microstructural Effect on the Radiative Properties of YSZ Thermal Barrier Coatings (TBCs),” Int. J. Heat Mass Transfer, 73, pp. 59–66. [CrossRef]
Jones, A. R. , 1981, “ The Influence of Size and Refractive Index on the Emissivity of Clouds of Particles,” J. Phys. D: Appl. Phys., 14(2), pp. 145–149. [CrossRef]
Molenaar, R. , ten Bosch, J. J. , and Zijp, J. R. , 1999, “ Determination of Kubelka–Munk Scattering and Absorption Coefficients by Diffuse Illumination,” Appl. Opt., 38(10), pp. 2068–2077. [CrossRef] [PubMed]
Murphy, A. B. , 2006, “ Modified Kubelka–Munk Model for Calculation of the Reflectance of Coatings With Optically-Rough Surfaces,” J. Phys. D: Appl. Phys., 39(16), pp. 3571–3581. [CrossRef]
Wang, L. , Eldridge, J. I. , and Guo, S. M. , 2014, “ Comparison of Different Models for the Determination of the Absorption and Scattering Coefficients of Thermal Barrier Coatings,” Acta Mater., 64, pp. 402–410. [CrossRef]
Rousseau, B. , Brun, J. F. , Meneses, D. D. , and Echegut, P. , 2005, “ Temperature Measurement: Christiansen Wavelength and Blackbody Reference,” Int. J. Thermophys., 26(4), pp. 1277–1286. [CrossRef]


Grahic Jump Location
Fig. 1

SEM image of the silica aerogel sample surface

Grahic Jump Location
Fig. 2

SEM image of the silica aerogel sample cross section

Grahic Jump Location
Fig. 3

Measurement method for the normal-hemispherical reflectance and transmittance

Grahic Jump Location
Fig. 4

Normal-hemispherical transmittances for samples with different thicknesses for wavelengths of 0.38–15 μm: sample A, 1.10 mm; sample B, 2.04 mm; and sample C, 3.17 mm

Grahic Jump Location
Fig. 5

Normal-hemispherical reflectances for samples with different thicknesses for wavelengths of 0.38–15 μm: sample A, 1.10 mm; sample B, 2.04 mm; and sample C, 3.17 mm

Grahic Jump Location
Fig. 6

Normal emittances for samples with different thicknesses for wavelengths of 0.38–15 μm: sample A, 1.10 mm; sample B, 2.04 mm; and sample C, 3.17 mm

Grahic Jump Location
Fig. 7

Normal transmittances of a fused quartz sample for wavelengths of 0.38–15 μm (1.10 mm thickness and 2200 kg/m3 density)

Grahic Jump Location
Fig. 8

Radiation propagation in the silica aerogel at room temperature

Grahic Jump Location
Fig. 9

Spectral absorption coefficient and scattering coefficient for the silica aerogel sample



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In