0
Research Papers: Micro/Nanoscale Heat Transfer

Combined Microstructure and Heat Transfer Modeling of Carbon Nanotube Thermal Interface Materials1

[+] Author and Article Information
Sridhar Sadasivam, Stephen L. Hodson

Department of Mechanical Engineering
and Birck Nanotechnology Center,
Purdue University,
West Lafayette, IN 47907

Matthew R. Maschmann

Department of Mechanical and Aerospace Engineering,
University of Missouri,
Columbia, MO 65211

Timothy S. Fisher

Department of Mechanical Engineering
and Birck Nanotechnology Center,
Purdue University,
West Lafayette, IN 47907
e-mail: tsfisher@purdue.edu

2Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 22, 2015; final manuscript received August 24, 2015; published online January 12, 2016. Assoc. Editor: Alan McGaughey.

J. Heat Transfer 138(4), 042402 (Jan 12, 2016) (12 pages) Paper No: HT-15-1292; doi: 10.1115/1.4032174 History: Received April 22, 2015; Revised August 24, 2015

A microstructure-sensitive thermomechanical simulation framework is developed to predict the mechanical and heat transfer properties of vertically aligned CNT (VACNT) arrays used as thermal interface materials (TIMs). The model addresses the gap between atomistic thermal transport simulations of individual CNTs (carbon nanotubes) and experimental measurements of thermal resistance of CNT arrays at mesoscopic length scales. Energy minimization is performed using a bead–spring coarse-grain model to obtain the microstructure of the CNT array as a function of the applied load. The microstructures obtained from the coarse-grain simulations are used as inputs to a finite volume solver that solves one-dimensional and three-dimensional Fourier heat conduction in the CNTs and filler matrix, respectively. Predictions from the finite volume solver are fitted to experimental data on the total thermal resistance of CNT arrays to obtain an individual CNT thermal conductivity of 12 W m−1 K−1 and CNT–substrate contact conductance of 7 × 107 W m−2 K−1. The results also indicate that the thermal resistance of the CNT array shows a weak dependence on the CNT–CNT contact resistance. Embedding the CNT array in wax is found to reduce the total thermal resistance of the array by almost 50%, and the pressure dependence of thermal resistance nearly vanishes when a matrix material is introduced. Detailed microstructural information such as the topology of CNT–substrate contacts and the pressure dependence of CNT–opposing substrate contact area are also reported.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Prasher, R. , 2006, “ Thermal Interface Materials: Historical Perspective, Status, and Future Directions,” Proc. IEEE, 94(8), pp. 1571–1586. [CrossRef]
Berber, S. , Kwon, Y.-K. , and Tomanek, D. , 2000, “ Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett., 84(20), pp. 4613–4616. [CrossRef] [PubMed]
Cao, A. , Dickrell, P. L. , Sawyer, W. G. , Ghasemi-Nejhad, M. N. , and Ajayan, P. M. , 2005, “ Super-Compressible Foam-Like Carbon Nanotube Films,” Science, 310(5752), pp. 1307–1310. [CrossRef] [PubMed]
Kim, P. , Shi, L. , Majumdar, A. , and McEuen, P. , 2001, “ Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett., 87(21), p. 215502. [CrossRef] [PubMed]
Yang, J. , Waltermire, S. , Chen, Y. , Zinn, A. A. , Xu, T. T. , and Li, D. , 2010, “ Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes,” Appl. Phys. Lett., 96(2), p. 023109. [CrossRef]
Cola, B. A. , Xu, J. , Cheng, C. , Xu, X. , Fisher, T. S. , and Hu, H. , 2007, “ Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces,” J. Appl. Phys., 101(5), p. 054313. [CrossRef]
Hu, X. J. , Padilla, A. A. , Xu, J. , Fisher, T. S. , and Goodson, K. E. , 2005, “ 3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon,” ASME J. Heat Transfer, 128(11), pp. 1109–1113. [CrossRef]
Maschmann, M. R. , Zhang, Q. , Du, F. , Dai, L. , and Baur, J. , 2011, “ Length Dependent Foam-Like Mechanical Response of Axially Indented Vertically Oriented Carbon Nanotube Arrays,” Carbon, 49(2), pp. 386–397. [CrossRef]
Won, Y. , Gao, Y. , Panzer, M. A. , Dogbe, S. , Pan, L. , Kenny, T. W. , and Goodson, K. E. , 2012, “ Mechanical Characterization of Aligned Multi-Walled Carbon Nanotube Films Using Microfabricated Resonators,” Carbon, 50(2), pp. 347–355. [CrossRef]
Hu, M. , Keblinski, P. , Wang, J.-S. , and Raravikar, N. , 2008, “ Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube,” J. Appl. Phys., 104(8), p. 083503. [CrossRef]
Ong, Z.-Y. , and Pop, E. , 2010, “ Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2,” Phys. Rev. B, 81(15), p. 155408. [CrossRef]
Chalopin, Y. , Volz, S. , and Mingo, N. , 2009, “ Upper Bound to the Thermal Conductivity of Carbon Nanotube Pellets,” J. Appl. Phys., 105(8), p. 084301. [CrossRef]
Prasher, R. S. , Hu, X. J. , Chalopin, Y. , Mingo, N. , Lofgreen, K. , Volz, S. , Cleri, F. , and Keblinski, P. , 2009, “ Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators,” Phys. Rev. Lett., 102(10), p. 105901. [CrossRef] [PubMed]
Zhong, H. , and Lukes, J. R. , 2006, “ Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling,” Phys. Rev. B, 74(12), p. 125403. [CrossRef]
Marconnet, A. M. , Yamamoto, N. , Panzer, M. A. , Wardle, B. L. , and Goodson, K. E. , 2011, “ Thermal Conduction in Aligned Carbon Nanotube Polymer Nanocomposites With High Packing Density,” ACS Nano, 5(6), pp. 4818–4825. [CrossRef] [PubMed]
Nan, C.-W. , Liu, G. , Lin, Y. , and Li, M. , 2004, “ Interface Effect on Thermal Conductivity of Carbon Nanotube Composites,” Appl. Phys. Lett., 85(16), pp. 3549–3551. [CrossRef]
Srivastava, I. , Sadasivam, S. , Smith, K. C. , and Fisher, T. S. , 2013, “ Combined Microstructure and Heat Conduction Modeling of Heterogeneous Interfaces and Materials,” ASME J. Heat Transfer, 135(6), p. 061603. [CrossRef]
Volkov, A. N. , and Zhigilei, L. V. , 2010, “ Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials,” Phys. Rev. Lett., 104(21), p. 215902. [CrossRef] [PubMed]
Volkov, A. N. , and Zhigilei, L. V. , 2012, “ Heat Conduction in Carbon Nanotube Materials: Strong Effect of Intrinsic Thermal Conductivity of Carbon Nanotubes,” Appl. Phys. Lett., 101(4), p. 043113. [CrossRef]
Cola, B. A. , Xu, J. , and Fisher, T. S. , 2009, “ Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces,” Int. J. Heat Mass Transfer, 52(15–16), pp. 3490–3503. [CrossRef]
Barako, M. , Gao, Y. , Won, Y. , Marconnet, A. , Asheghi, M. , and Goodson, K. , 2014, “ Reactive Metal Bonding of Carbon Nanotube Arrays for Thermal Interface Applications,” IEEE Trans. Compon. Packag. Manuf. Technol., 4(12), pp. 1906–1913. [CrossRef]
Marconnet, A. M. , Panzer, M. A. , and Goodson, K. E. , 2013, “ Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials,” Rev. Mod. Phys., 85(3), pp. 1295–1326. [CrossRef]
Maschmann, M. R. , 2015, “ Integrated Simulation of Active CNT Forest Growth and Mechanical Compression,” Carbon, 86, pp. 26–37. [CrossRef]
Buehler, M. J. , 2006, “ Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self Assembly, Self-Folding, and Fracture,” J. Mater. Res., 21(11), pp. 2855–2869. [CrossRef]
Volkov, A. N. , and Zhigilei, L. V. , 2010, “ Structural Stability of Carbon Nanotube Films: The Role of Bending Buckling,” ACS Nano, 4(10), pp. 6187–6195. [CrossRef] [PubMed]
Volkov, A. N. , Shiga, T. , Nicholson, D. , Shiomi, J. , and Zhigilei, L. V. , 2012, “ Effect of Bending Buckling of Carbon Nanotubes on Thermal Conductivity of Carbon Nanotube Materials,” J. Appl. Phys., 111(5), p. 053501. [CrossRef]
Ostanin, I. , Ballarini, R. , Potyondy, D. , and Dumitrică, T. , 2013, “ A Distinct Element Method for Large Scale Simulations of Carbon Nanotube Assemblies,” J. Mech. Phys. Solids, 61(3), pp. 762–782. [CrossRef]
Cranford, S. , Yao, H. , Ortiz, C. , and Buehler, M. J. , 2010, “ A Single Degree of Freedom Lollipop Model for Carbon Nanotube Bundle Formation,” J. Mech. Phys. Solids, 58(3), pp. 409–427. [CrossRef]
Li, Y. , and Kröger, M. , 2012, “ A Theoretical Evaluation of the Effects of Carbon Nanotube Entanglement and Bundling on the Structural and Mechanical Properties of Buckypaper,” Carbon, 50(5), pp. 1793–1806. [CrossRef]
Li, Y. , and Kröger, M. , 2012, “ Computational Study on Entanglement Length and Pore Size of Carbon Nanotube Buckypaper,” Appl. Phys. Lett., 100(2), p. 021907. [CrossRef]
Yang, X. , He, P. , and Gao, H. , 2012, “ Competing Elastic and Adhesive Interactions Govern Deformation Behaviors of Aligned Carbon Nanotube Arrays,” Appl. Phys. Lett., 101(5), p. 053105. [CrossRef]
Won, Y. , Gao, Y. , Panzer, M. A. , Xiang, R. , Maruyama, S. , Kenny, T. W. , Cai, W. , and Goodson, K. E. , 2013, “ Zipping, Entanglement, and the Elastic Modulus of Aligned Single-Walled Carbon Nanotube Films,” Proc. Natl. Acad. Sci., 110(51), pp. 20426–20430. [CrossRef]
Wong, E. W. , Sheehan, P. E. , and Lieber, C. M. , 1997, “ Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, 277(5334), pp. 1971–1975. [CrossRef]
Ru, C. , 2000, “ Effective Bending Stiffness of Carbon Nanotubes,” Phys. Rev. B, 62(15), pp. 9973–9976. [CrossRef]
Cranford, S. , and Buehler, M. J. , 2009, “ Mechanomutable Carbon Nanotube Arrays,” Int. J. Mater. Struct. Integrity, 3(2–3), pp. 161–178. [CrossRef]
Plimpton, S. , 1995, “ Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Kumar, S. , Alam, M. A. , and Murthy, J. Y. , 2007, “ Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics,” ASME J. Heat Transfer, 129(4), pp. 500–508. [CrossRef]
Pharr, G. , Oliver, W. , and Brotzen, F. , 1992, “ On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., 7(3), pp. 613–617. [CrossRef]
Hu, H. , Wang, X. , and Xu, X. , 1999, “ Generalized Theory of the Photoacoustic Effect in a Multilayer Material,” J. Appl. Phys., 86(7), pp. 3953–3958. [CrossRef]
Wang, X. , Cola, B. A. , Bougher, T. L. , Hodson, S. L. , Fisher, T. S. , and Xu, X. , 2013, “ Photoacoustic Technique for Thermal Conductivity and Thermal Interface Measurements,” Annu. Rev. Heat Transfer, 16(1), pp. 135–157. [CrossRef]
Zhou, W. , Huang, Y. , Liu, B. , Hwang, K. C. , Zuo, J. M. , Buehler, M. J. , and Gao, H. , 2007, “ Self-Folding of Single- and Multiwall Carbon Nanotubes,” Appl. Phys. Lett., 90(7), p. 073107. [CrossRef]
Lu, Y. , Joseph, J. , Zhang, Q. , Maschmann, M. , Dai, L. , and Baur, J. , 2012, “ Large-Displacement Indentation Testing of Vertically Aligned Carbon Nanotube Arrays,” Exp. Mech., 52(9), pp. 1551–1554. [CrossRef]
Wang, Y. , Sadasivam, S. , and Fisher, T. S. , 2015. “ Combined Microstructure and Heat Transfer Modeling of Carbon Nanotube Thermal Interface Materials,” [CrossRef]
Hu, L. , and McGaughey, A. J. , 2014, “ Thermal Conductance of the Junction Between Single-Walled Carbon Nanotubes,” Appl. Phys. Lett., 105(19), p. 193104. [CrossRef]
Cola, B. A. , Hodson, S. L. , Xu, X. , and Fisher, T. S. , 2008, “ Carbon Nanotube Array Thermal Interfaces Enhanced With Paraffin Wax,” ASME Paper No. HT2008-56483.

Figures

Grahic Jump Location
Fig. 2

Schematic representation of the coarse-grain model

Grahic Jump Location
Fig. 1

Schematic representation of the modeling approach used to develop a microstructure-dependent heat transfer model of VACNT TIMs

Grahic Jump Location
Fig. 3

Schematic of CNTs embedded in a filler matrix. One-dimensional discretization is performed along the length of the CNTs and three-dimensional rectangular cells are used in the discretization of the filler matrix.

Grahic Jump Location
Fig. 4

(a) Experimental load–displacement curve obtained from nanoindentation of a 10 μm tall CNT array. (b) Simulated stress–strain curves obtained from coarse-grain mechanics simulations.

Grahic Jump Location
Fig. 5

(a) Experimental load–displacement curve of a 10 μm tall array with unloading at indentation depths of 2 and 3 μm. (b) Unloading stress–strain curve obtained from coarse-grain simulations of 10 μm tall arrays (results averaged over four random realizations).

Grahic Jump Location
Fig. 6

Energy-relaxed configurations of a 5 μm tall CNT array containing 400 CNTs in the simulation box. (a) No load (point A in Fig. 4(b)), (b) strain = 0.014, load = 75 kPa (point B in Fig. 4(b)), (c) strain = 0.045, load = 160 kPa (point C in Fig. 4(b)), (d) strain = 0.11, load = 122 kPa (point D in Fig. 4(b)), and (e) strain = 0.14, load = 119 kPa (point E in Fig. 4(b)).

Grahic Jump Location
Fig. 8

(a) Total thermal resistance of 3, 5, and 10 μm tall CNT arrays compared with experimental measurements. (b) Diffusive thermal resistance of 3, 5, and 10 μm tall CNT arrays.

Grahic Jump Location
Fig. 7

Cumulative distribution of the number of consecutive bead–bead contacts among CNT pairs having at least one van der Waals contact

Grahic Jump Location
Fig. 9

(a) Dependence of total thermal resistance of a 5 μm tall CNT array on the CNT–CNT contact conductance. (b) Sensitivity of total thermal interface resistance to CNT–CNT contact conductance (Gcc), CNT thermal conductivity (kc), and CNT–substrate contact conductance (Gcs).

Grahic Jump Location
Fig. 10

(a) Variation of mean CNT tip inclination with applied load. (b) Fraction of CNTs in contact with the substrate as function of applied load. (c) Variation of CNT–substrate contact area with applied load. All the results in this figure are averaged over four random initial realizations of the CNT array.

Grahic Jump Location
Fig. 11

Effect of paraffin wax on the total thermal resistance of a 10 μm tall CNT array

Grahic Jump Location
Fig. 13

Convergence of mechanics and thermal results of a 5 μm tall array with respect to simulation parameters ro and N. (a) Stress–strain curves. (b) Pressure dependence of total thermal resistance.

Grahic Jump Location
Fig. 12

Convergence of mechanics and thermal results of a 3 μm tall array with respect to simulation parameters ro and N. (a) Stress–strain curves. (b) Pressure dependence of total thermal resistance.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In