0
Research Papers: SPECIAL SECTION PAPERS

Numerical Investigation of Heat and Mass Transfer During the Desorption Process of a LaNi5–H2 Reactor

[+] Author and Article Information
Fatma Bouzgarrou

Laboratory of Energy and
Thermal Systems (LESTE),
University of Monastir,
Monastir 5019, Tunisia
e-mail: Bouzgarroufatma@yahoo.fr

Faouzi Askri

Laboratory of Energy and
Thermal Systems (LESTE),
University of Monastir,
Monastir 5019, Tunisia;
Faculty of Engineering,
King Khalid University,
Abha 62529, Saudi Arabia
e-mail: Faouzi.askri@enim.rnu.tn

S. Ben Nasrallah

Laboratory of Energy and
Thermal Systems (LESTE),
University of Monastir,
Monastir 5019, Tunisia
e-mail: Sassi.bennasrallah@enim.rnu.tn

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received August 12, 2014; final manuscript received March 11, 2016; published online June 1, 2016. Assoc. Editor: Ziad Saghir.

J. Heat Transfer 138(9), 091006 (Jun 01, 2016) (7 pages) Paper No: HT-14-1527; doi: 10.1115/1.4033056 History: Received August 12, 2014; Revised March 11, 2016

In this paper, coupled heat and mass transfer during the desorption process of a metal–hydrogen reactor (LaNi5–H2) is numerically investigated. To predict the dynamic behavior of this reactor, a new algorithm based on the lattice Boltzmann method (LBM) is proposed as a potential solver. Based on this algorithm, a computer code is developed using fortran 90. This algorithm is validated successfully by comparison with experimental data reported in the literature and results obtained by finite volume method (FVM). Using the developed code, the time–space evolutions of the temperature and the hydride density within the reactor are presented. In addition, the effect of some parameters (applied pressure, heating temperature, and overall heat transfer coefficient) on the dynamic behavior of the reactor is evaluated. Compared to the FVM, the proposed algorithm presents simple implementation on a computer and with reduced CPU time.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Veziroglu, T. N. , 2000, “ Quarter Century of Hydrogen Movement 1974–2000,” Int. J. Hydrogen Energy, 25(12), pp. 1143–1150. [CrossRef]
Goltsov, V. A. , Veziroglu, T. N. , and Goltsova, L. F. , 2006, “ Hydrogen Civilization of the Future—A New Conception of the IAHE,” Int. J. Hydrogen Energy, 31(2), pp. 153–159. [CrossRef]
Anani, A. , 1994, “ Alloys for Hydrogen Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries,” Int. J. Power Sources, 47(3), pp. 261–275. [CrossRef]
T-Raissi, A. , Banerjee, A. , and Sheinkopf, K. , 1996, “ Metal Hydride Storage Requirements for Transportation Applications,” 31st Intersociety Energy Conversion Engineering Conference, Vol. 4, pp. 2280–2285.
Gopal, M. R. , and Murthy, S. S. , 1995, “ Studies on Heat and Mass Transfer in Metal Hydride Beds,” Int. J. Hydrogen Energy, 20(11), pp. 911–917. [CrossRef]
Jemni, A. , and Ben Nasrallah, S. , 1995, “ Study of Two Dimensional Heat and Mass Transfer During Absorption in a Metal Hydrogen Reactor,” Int. J. Hydrogen Energy, 20(1), pp. 43–52. [CrossRef]
Jemni, A. , and Ben Nasrallah, S. , 1995, “ Study of Two Dimensional Heat and Mass Transfer During Desorption in a Metal Hydrogen Reactor,” Int. J. Hydrogen Energy, 20(11), pp. 881–891. [CrossRef]
Ben Nasrallah, S. , and Jemni, A. , 1997, “ Heat and Mass Transfer Models in a Metal–Hydrogen Reactor,” Int. J. Hydrogen Energy, 22(1), pp. 67–76. [CrossRef]
Jemni, A. , Ben Nasrallah, S. , and Lamloumi, J. , 1999, “ Experimental and Theoretical Study of Metal–Hydrogen Reactor,” Int. J. Hydrogen Energy, 24(7), pp. 631–644. [CrossRef]
Shmalkov, Y. U. F. , Kolosov, V. I. , Solovey, V. V. , Kennedy, L. A. , and Zelepouga, S. A. , 1998, “ Mathematical Simulation of Heat-and-Mass Transfer Processes in Metal Hydride-Hydrogen-Gas Impurities Systems,” Int. J. Hydrogen Energy, 23(6), pp. 463–468. [CrossRef]
Mat, M. D. , Kaplan, Y. , and Aldas, K. , 2002, “ Investigation of Three Dimensional Heat and Mass Transfer in a Metal Hydride Reactor,” Int. J. Hydrogen Energy, 26(11), pp. 973–986.
Aldas, K. , Mat, M. D. , and Kaplan, Y. , 2002, “ A Three-Dimensional Mathematical Model for Absorption in a Metal Hydride Bed,” Int. J. Hydrogen Energy, 27(10), pp. 1049–1056. [CrossRef]
Kaplan, Y. , and Veziroglu, T. N. , 2003, “ Mathematical Modeling of Hydrogen Storage in LaNi5 Hydride Bed,” Int. J. Hydrogen Energy, 27(11), pp. 1027–1038.
Askri, F. , Jemni, A. , and Ben Nasrallah, S. , 2003, “ Study of Two-Dimensional and Dynamic Heat and Mass Transfer in a Metal–Hydrogen Reactor,” Int. J. Hydrogen Energy, 28(5), pp. 537–557. [CrossRef]
MacDonald, B. D. , and Rowe, A. M. , 2006, “ Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks,” Int. J. Hydrogen Energy, 31(12), pp. 1721–1731. [CrossRef]
Askri, F. , Jemni, A. , and Ben Nasrallah, S. , 2004, “ Prediction of Transient Heat and Mass Transfer in a Closed Metal–Hydrogen Reactor,” Int. J. Hydrogen Energy, 29(2), pp. 195–208. [CrossRef]
Askri, F. , Jemni, A. , and Ben Nasrallah, S. , 2004, “ Dynamic Behavior of Metal–Hydrogen Reactor During Hydriding Process,” Int. J. Hydrogen Energy, 29(6), pp. 635–647. [CrossRef]
Demircan, A. , Demiralp, M. , Kaplan, Y. , Mat, M. D. , and Veziroglu, T. N. , 2005, “ Experimental and Theoretical Analysis of Hydrogen Absorption in LaNi5–H2 Reactors,” Int. J. Hydrogen Energy, 30(13–14), pp.1437–1446. [CrossRef]
Mohan, G. , Prakash Maiya, M. , and Srinivasa Murthy, S. , 2007, “ Performance Simulation of Metal Hydride Hydrogen Storage Device With Embedded Filters and Heat Exchanger Tubes,” Int. J. Hydrogen Energy, 32(18), pp. 4978–4987. [CrossRef]
Pourpoint, T. L. , Velagapudi, V. , Mudawar, I. , Yuan , Zheng, Y. , and Fisher, T. S. , 2010, “ Active Cooling of a Metal Hydride System for Hydrogen Storage,” Int. J. Heat Mass Transfer,” 53(7–8), pp. 1326–1332. [CrossRef]
Ben Mâad, H. , Askri, F. , and Ben Nasrallah, S. , 2013, “ Numerical Investigation of Heat and Mass Transfer During the Desorption Process of an Mg2Ni-H2 Reactor,” Int. J. Hydrogen Energy, 38(11), pp. 4597–4610. [CrossRef]
Frisch, U. , d'Humieres, D. , Hasslacher, B. , Lallemand, P. , Pomeau, Y. , and Rivet, J. P. , 1987, “ Lattice Gas Hydrodynamics in Two and Three Dimensions,” Complex Syst., 1(4), pp. 649–707, www.complex-systems.com/pdf/01-4-7.pdf
Namara, M. C. , Guy, R. , and Zanetti, G. , 1988, “ Use of the Boltzmann Equation to Simulate Lattice-Gas Automata,” Phys. Rev. Lett., 61(20), pp. 2332–2335. [CrossRef] [PubMed]
Higuera, F. J. , and Jiménez, J. , 1989, “ Boltzmann Approach to Lattice Gas Simulations,” Europhys. Lett., 9(7), pp. 663–668. [CrossRef]
Succi, S. , Benzi, R. , and Higuera, F. , 1991, “ The Lattice-Boltzmann Equation—A New Tool for Computational Fluid Dynamics,” Physica D, 47(1–2), pp. 219–230. [CrossRef]
Benzi, R. , Succi, S. , and Vergassola, M. , 1992, “ The Lattice Boltzmann Equation—Theory and Applications,” Phys. Rep., 222(3), pp. 145–197. [CrossRef]
Wolf-Gladrow, D. A. , 2000, Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Springer-Verlag, Berlin.
Maier, R. S. , Kroll, D. M. , Davis, H. T. , and Bernard, R. S. , 1999, “ Simulation of Flow in Bidisperse Sphere Packings,” J. Colloid Interface Sci., 217(2), pp. 341–347. [CrossRef] [PubMed]
Clague, D. S. , Kandhai, B. D. , Zhang, R. , and Sloot, P. M. , 2000, “ Hydraulic Permeability of Bounded Fibrous Media Using the Lattice Boltzmann Method,” Phys. Rev. E, 61(1), pp. 616–625. [CrossRef]
Hill, R. J. , Koch, D. L. , and Ladd, A. J. C. , 2001, “ Moderate-Reynolds-Number Flows in Ordered and Random Arrays of Spheres,” J. Fluid Mech., 448, pp. 243–278.
Maier, R. S. , Kroll, D. M. , Bernard, R. S. , Howington, S. E. , Peters, J. F. , and Davis, H. T. , 2002, “ Enhanced Dispersion in Cylindrical Packed Beds,” Philos. Trans. R. Soc. London A, 360 (1792), pp. 497–506. [CrossRef]
Manz, B. , Gladden, L. F. , and Warren, P. B. , 2004, “ Flow and Dispersion in Porous Media: Lattice-Boltzmann and NMR Studies,” AIChE J., 45(9), pp. 1845–1854. [CrossRef]
Gupta, N. , Chaitanya, R. , and Mishra, S. C. , 2006, “ Lattice Boltzmann Method Applied to Variable Thermal Conductivity Conduction and Radiation Problems,” J. Thermophys. Heat Transfer, 20(4), pp. 895–902. [CrossRef]
Mishra, S. C. , and Roy, H. K. , 2007, “ Solving Transient Conduction and Radiation Heat Transfer Problems Using the Lattice Boltzmann Method and the Finite Volume Method,” J. Comput. Phys., 223(1), pp. 89–107. [CrossRef]
Wang, J. K. , Wang, M. R. , and Li, Z. X. , 2007, “ A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer,” Int. J. Therm. Sci., 46(3), pp. 228–234. [CrossRef]
Long-Sheng, K. , and Ping-Hei, C. , 2009, “ Numerical Implementation of Thermal Boundary Conditions in the Lattice Boltzmann Method,” Int. J. Heat Mass Transfer, 52(1–2), pp. 529–532.
Mishra, S. C. , Bittagopal, M. , Tanuj, K. , and Krishna, B. S. R. , 2009, “ Solving Transient Heat Conduction Problems on Uniform and Non-Uniform Lattices Using the Lattice Boltzmann Method,” Int. Commun. Heat Mass Transfer, 36(4), pp. 322–328. [CrossRef]
Chaabane, R. , Askri, F. , and Ben Nasrallah, S. , 2011, “ Analysis of Two-Dimensional Transient Conduction-Radiation Problems in an Anisotropically Scattering Participating Enclosure Using the Lattice Boltzmann Method and the Control Volume Finite Element Method,” Comput. Phys. Commun., 182(7), pp. 1402–1413. [CrossRef]
Chaabane, R. , Askri, F. , and Ben Nasrallah, S. , 2011, “ Application of the Lattice Boltzmann Method to Transient Conduction and Radiation Heat Transfer in Cylindrical Media,” J. Quant. Spectrosc. Radiat. Transfer, 112(12), pp. 2013–2027. [CrossRef]
Takada, N. , Misawa, M. , Tomiyama, A. , and Fujiwara, S. , 2000, “ Numerical Simulation of Two- and Three Dimensional Two-Phase Fluid Motion by Lattice Boltzmann Method,” Comput. Phys. Commun., 129(1–3), pp. 233–236. [CrossRef]
Ho, J. R. , Kuo, C. P. , Jiaung, W. S. , and Twu, C. J. , 2002, “ Lattice Boltzmann Scheme for Hyperbolic Heat Conduction Equation,” Numer. Heat Transfer Part B, 41(6), pp. 591–607. [CrossRef]
Nourgaliev, R. R. , Dinh, T. N. , Theofanous, T. G. , and Joseph, D. , 2003, “ The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications,” Int. J. Multiphase Flow, 29(1), pp. 117–169. [CrossRef]
Zhu, L. , Tretheway, D. , Petzold, L. , and Meinhart, C. , 2005, “ Simulation of Fluid Slip at 3D Hydrophobic Micro Channel Walls by the Lattice Boltzmann Method,” J. Comput. Phys., 202(1), pp. 181–195. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Metal–hydrogen reactor

Grahic Jump Location
Fig. 2

Schematic diagram of the D2Q9 lattice

Grahic Jump Location
Fig. 3

Calculated and measured pressure evolution within the reservoir

Grahic Jump Location
Fig. 4

Time evolution of temperature during the desorption process at three locations (A, B, and C) of the reactor

Grahic Jump Location
Fig. 5

Time–space evolution of (a) the temperature and (b) the hydride density

Grahic Jump Location
Fig. 6

Effect of hydrogen outlet pressure on (a) temperature and (b) hydrogen mass desorbed

Grahic Jump Location
Fig. 7

Effect of heating fluid temperature on hydrogen mass desorbed

Grahic Jump Location
Fig. 8

Effect of overall heat transfer coefficient on hydrogen mass desorbed

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In