Thackery,
P.
, 1979, “
The Cost of Fouling in Heat Exchange Plant,” Effluent Water Treat. J.,
20(3), pp. 111–115.

Garrett-Price,
B.
, 1985, Fouling of Heat Exchangers: Characteristics, Costs, Prevention, Control and Removal,
Noyes Publications, Saddle River, NJ.

Pilavachi,
P.
, and
Isdale,
J.
, 1993, “
European Community R&D Strategy in the Field of Heat Exchanger Fouling: Projects,” Heat Recovery Syst. CHP,
13(2), pp. 133–138.

[CrossRef]
Zhi-Ming,
X.
, and
Zhong-Bin,
Z.
, 2008, “
Costs Due to Utility Fouling in China,” Heat Exchanger Fouling and Cleaning VII, Stuttgart, Germany, July 1–7.

Sheikh,
A.
,
Zubair,
S.
,
Younas,
M.
, and
Budair,
M.
, 2000, “
A Risk Based Heat Exchanger Analysis Subject to Fouling: Part II: Economics of Heat Exchangers Cleaning,” Energy,
25(5), pp. 445–461.

[CrossRef]
Ishiyama,
E.
,
Paterson,
W.
, and
Wilson,
D.
, 2008, “
The Effect of Fouling on Heat Transfer, Pressure Drop and Throughput in Refinery Preheat Trains: Optimisation of Cleaning Schedules,” Heat Transfer Eng.,
30(10–11), p. 805814.

Epstein,
N.
, 1983, “
Thinking About Heat Transfer Fouling: A 5 × 5 Matrix,” Heat Transfer Eng.,
4(1), pp. 43–56.

[CrossRef]
Asomaning,
S.
, 1997, “
Heat Exchanger Fouling by Petroleum Asphaltenes,” Ph.D. dissertation,
University of British Columbia,
Vancouver, BC, Canada.

Saleh,
Z.
, and
Sheikholeslami,
R.
, 2004, “
Fouling Characteristics of a Light Australian Crude Oil,” Heat Transfer Eng.,
26(1), p. 1522.

Srinivasan,
M.
, and
Watkinson,
A.
, 2005, “
Fouling of Some Canadian Crude Oils,” Heat Transfer Eng.,
26(1), pp. 7–14.

[CrossRef]
Crittenden,
B.
,
Kolaczkowski,
S.
, and
Downey,
I.
, 1992, “
Fouling of Crude Oil Preheat Exchangers,” Chem. Eng. Res. Des.,
70(6), pp. 547–557.

Zubair,
S.
,
Sheikh,
A.
,
Younas,
M.
, and
Budair,
M.
, 2000, “
A Risk Based Heat Exchanger Analysis Subject to Fouling: Part I: Performance Evaluation,” Energy,
25(5), pp. 427–443.

[CrossRef]
Niaei,
A.
,
Towfighi,
J.
,
Sadrameli,
S.
, and
Karimzadeh,
R.
, 2004, “
The Combined Simulation of Heat Transfer and Pyrolysis Reactions in Industrial Cracking Furnaces,” Appl. Therm. Eng.,
24(14–15), pp. 2251–2265.

[CrossRef]
Bahadori,
A.
, and
Vuthaluru,
H. B.
, 2010, “
Novel Predictive Tools for Design of Radiant and Convective Sections of Direct Fired Heaters,” Appl. Energy,
87(7), pp. 2194–2202.

[CrossRef]
Stefanidis,
G.
,
Merci,
B.
,
Heynderickx,
G.
, and
Marin,
G.
, 2006, “
CFD Simulations of Steam Cracking Furnaces Using Detailed Combustion Mechanisms,” Comput. Chem. Eng.,
30(4), pp. 635–649.

[CrossRef]
Oprins,
A.
, and
Heynderickx,
G.
, 2003, “
Calculation of Three-Dimensional Flow and Pressure Fields in Cracking Furnaces,” Chem. Eng. Sci.,
58(21), pp. 4883–4893.

[CrossRef]
Heynderickx,
G.
,
Oprins,
A.
,
Marin,
G. B.
, and
Dick,
E.
, 2001, “
Three-Dimensional Flow Patterns in Cracking Furnaces With Long-Flame Burners,” AIChE J.,
47(2), pp. 388–400.

[CrossRef]
Habibi,
A.
,
Merci,
B.
, and
Heynderickx,
G.
, 2007, “
Impact of Radiation Models in CFD Simulations of Steam Cracking Furnaces,” Comput. Chem. Eng.,
31(11), pp. 1389–1406.

[CrossRef]
Lan,
X.
,
Gao,
J.
,
Xu,
C.
, and
Zhang,
H.
, 2007, “
Numerical Simulation of Transfer and Reaction Processes in Ethylene Furnaces,” Chem. Eng. Res. Des.,
85(12), pp. 1565–1579.

[CrossRef]
Hu,
G.
,
Wang,
H.
,
Qian,
F.
,
Geem,
K. V.
,
Schietekat,
C.
, and
Marin,
G.
, 2012, “
Coupled Simulation of an Industrial Naphtha Cracking Furnace Equipped With Long-Flame and Radiation Burners,” Comput. Chem. Eng.,
38, pp. 24–34.

[CrossRef]
Morales-Fuentes,
A.
,
Picón-Núñez,
M.
,
Polley,
G.
, and
Méndez-Díaz,
S.
, 2014, “
Analysis of the Influence of Operating Conditions on Fouling Rates in Fired Heaters,” Appl. Therm. Eng.,
62(2), pp. 777–784.

[CrossRef]
Jegla,
Z.
,
Vondál,
J.
, and
Hájek.,
J.
, 2015, “
Standards for Fired Heater Design: An Assessment Based on Computational Modelling,” Appl. Therm. Eng.,
89, pp. 1068–1078.

[CrossRef]
Wang,
L.
, and
Pitsch,
H.
, 2007, “
Large-Eddy Simulation of an Industrial Furnace With a Cross-Flow-Jet Combustion System,” Center for Turbulence Research, Annual Research Briefs, pp. 231–240.

Coelho,
P.
, and
Carvalho,
M.
, 1997, “
A Conservative Formulation of the Discrete Transfer Method,” ASME J. Heat Transfer,
119(1), pp. 118–128.

[CrossRef]
Koch,
R.
,
Krebs,
W.
,
Wittig,
S.
, and
Viskanta,
R.
, 1995, “
Discrete Ordinates Quadrature Schemes for Multidimensional Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer,
53(4), pp. 353–372.

[CrossRef]
Fiveland,
W.
, 1984, “
Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures,” ASME J. Heat Transfer,
106(4), p. 699706.

[CrossRef]
Raithby,
G.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media,” ASME J. Heat Transfer,
112(2), p. 415423.

[CrossRef]
Amaya,
J.
,
Cabrit,
O.
,
Poitou,
D.
,
Cuenot,
B.
, and
Hafi,
M. E.
, 2010, “
Unsteady Coupling of Navier–Stokes and Radiative Heat Transfer Solvers Applied to an Anisothermal Multicomponent Turbulent Channel Flow,” J. Quant. Spectrosc. Radiat. Transfer,
111(2), pp. 295–301.

[CrossRef]
Joseph,
D.
,
Perez,
P.
,
Hafi,
M. E.
, and
Cuenot,
B.
, 2009, “
Discrete Ordinates and Monte Carlo Methods for Radiative Transfer Simulation Applied to Computational Fluid Dynamics Combustion Modeling,” ASME J. Heat Transfer,
131(5), p. 052701.

[CrossRef]
Liu,
F.
,
Becker,
H.
, and
Bindar,
Y.
, 1998, “
A Comparative Study of Radiative Heat Transfer Modelling in Gas-Fired Furnaces Using the Simple Grey Gas and the Weighted-Sum-of-Grey-Gases Models,” Int. J. Heat Mass Transfer,
41(22), pp. 3357–3371.

[CrossRef]
Claramunt,
K.
,
Consul,
R.
,
Carbonell,
D.
, and
Perez-Segarra,
C.
, 2006, “
Analysis of the Laminar Flamelet Concept for Nonpremixed Laminar Flames,” Combust. Flame,
145(4), pp. 845–862.

[CrossRef]
Fiorina,
B.
,
Gicquel,
O.
,
Vervisch,
L.
,
Carpentier,
S.
, and
Darabiha,
N.
, 2005, “
Approximating the Chemical Structure of Partially Premixed and Diffusion Counterflow Flames Using FPI Flamelet Tabulation,” Combust. Flame,
140(3), pp. 147–160.

[CrossRef]
Liu,
F.
,
Guo,
H.
, and
Smallwood,
G.
, 2006, “
Evaluation of the Laminar Diffusion Flamelet Model in the Calculation of an Axisymmetric Coflow Laminar Ethylene-Air Diffusion Flame,” Combust. Flame,
144(3), pp. 605–618.

[CrossRef]
Bilger,
R.
,
Starner,
S.
, and
Kee,
R.
, 1990, “
On Reduced Mechanisms for Methane—Air Combustion in Nonpremixed Flames,” Combust. Flame,
80(2), pp. 135–149.

[CrossRef]
Bilger,
R.
, 2010, “
A Mixture Fraction Framework for the Theory and Modeling of Droplets and Sprays,” Combust. Flame,
158(6), p. 191202.

Poinsot,
T.
, and
Veynante,
D.
, 2005, Theoretical and Numerical Combustion,
RT Edwards,
Philadelphia, PA, p. 522.

Bilger,
R. W.
,
Yip,
B.
,
Long,
M. B.
, and
Masri,
A. R.
, 1990, “
An Atlas of QEDR Flame Structures,” Combust. Sci. Technol.,
72(4–6), pp. 137–155.

[CrossRef]
Abramowitz,
M.
, and
Stegun,
I.
, 1972, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Applied Mathematics Series 55),
10th printing,
Dover, New York.

Barlow,
R. S.
,
Franck,
J.
,
Karpetis,
A.
, and
Chen,
J.-Y.
, 2005, “
Piloted Methane/Air Jet Flames: Transport Effects and Aspects of Scalar Structure,” Combust. Flame,
143(4), pp. 433–449.

[CrossRef]
Bilger,
R. W.
, 1988, “
The Structure of Turbulent Non Premixed Flames,” Symp. (Int.) Combust., pp. 475–488.

Goodwin,
D. G.
, 2009, Cantera code site.

Poitou,
D.
, 2009, “
Modélisation du rayonnement dans la simulation aux grandes échelles de la combustion turbulente,” Ph.D. thesis, INPT, Toulouse, France.

Joseph,
D.
,
Hafi,
M. E.
,
Fournier,
R.
, and
Cuenot,
B.
, 2005, “
Comparison of Three Spatial Differencing Schemes in Discrete Ordinates Method Using Three-Dimensional Unstructured Meshes,” Int. J. Therm. Sci.,
44(9), pp. 851–864.

[CrossRef]
Truelove,
J.
, 1987, “
Discrete-Ordinate Solutions of the Radiation Transport Equation,” ASME J. Heat Transfer,
109(4), pp. 1048–1051.

Lebedev,
V.
, 1975, “
Values of the Nodes and Weights of Ninth to Seventeenth Order Gauss–Markov Quadrature Formulae Invariant Under the Octahedron Group With Inversion,” USSR Comput. Math. Math. Phys.,
15(1), pp. 44–51.

Carlson,
B.
, and
Lathrop,
K.
, 1968, “
Transport Theory—The Method of Discrete Ordinates,” Computing Methods in Reactors Physics,
Gordon and Breach,
New York.

Amaya,
J.
, 2010, “
Unsteady Coupled Convection, Conduction and Radiation Simulations on Parallel Architectures for Combustion Applications,” Ph.D. thesis, INPT, Toulouse, France.

Koch,
R.
, and
Becker,
R.
, 2004, “
Evaluation of Quadrature Schemes for the Discrete Ordinates Method,” J. Quant. Spectrosc. Radiat. Transfer,
84(4), pp. 423–435.

[CrossRef]
Duchaine,
F.
,
Corpron,
A.
,
Pons,
L.
,
Moureau,
V.
,
Nicoud,
F.
, and
Poinsot,
T.
, 2009, “
Development and Assessment of a Coupled Strategy for Conjugate Heat Transfer With Large Eddy Simulation. Application to a Cooled Turbine Blade,” Int. J. Heat Fluid Flow,
30(6), pp. 1129–1141.

[CrossRef]
Kays,
W.
,
Crawford,
M.
, and
Weigand,
B.
, 1993, Convective Heat and Mass Transfer,
McGraw-Hill,
New York.

Bejan,
A.
, and
Kraus,
A.
, 2003, Heat Transfer Handbook,
Wiley,
Hoboken NJ.

Lienhard,
J.
,
Eichhorn,
R.
, and
Lienhard,
J.
, 1987, A Heat Transfer Textbook,
Phlogiston Press,
Cambridge MA.

Oosthuizen,
P.
, and
Naylor,
D.
, 1999, An Introduction to Convective Heat Transfer Analysis,
William C. Brown Pub.,
Dubuque, IA.

Viskanta,
R.
, and
Mengüç,
M. P.
, 1987, “
Radiation Heat Transfer in Combustion Systems,” Prog. Energy Combust. Sci.,
13(2), pp. 97–160.

[CrossRef]
Pedot,
T.
, 2012, “
Modelisation du couplage thermique entre la combustion et l'encrassement des tubes dans un four de raffinerie,” Ph.D. thesis, INPT, Toulouse, France.

Enomoto,
H.
,
Tsai,
Y.
, and
Essenhigh,
R.
, 1975, “
Heat Transfer in a Continuous Model Furnace: A Comparison of Theory and Experiment,” ASME Paper No. 75-HT-5.

Hottel,
H.
, and
Sarofim,
A. F.
, 1967, Hottel and Sarofim Radiative Transfer,
McGraw-Hill Book Company, New York.

Wauters,
S.
, and
Marin,
G. B.
, 2002, “
Kinetic Modeling of Coke Formation During Steam Cracking,” Ind. Eng. Chem. Res.,
41(10), pp. 2379–2391.

[CrossRef]