Kraan,
M.
,
Peeters,
M. M. W.
,
Cid,
M. V. F.
,
Woerlee,
G. F.
,
Veugelers,
W. J. T.
, and
Witkamp,
G. J.
, 2005, “
The Influence of Variable Physical Properties and Buoyancy on Heat Exchanger Design for Near- and Supercritical Conditions,” J. Supercrit. Fluids,
34(1), pp. 99–105.

[CrossRef]
Yamaguchi,
H.
,
Sawada,
N.
,
Suzuki,
H.
,
Ueda,
H.
, and
Zhang,
X. R.
, 2010, “
Preliminary Study on a Solar Water Heater Using Supercritical Carbon Dioxide as Working Fluid,” ASME J. Sol. Energy Eng.,
132(1), p. 011010.

[CrossRef]
Pecnik,
R.
,
Rinaldi,
E.
, and
Colonna,
P.
, 2012, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO

_{2},” ASME J. Eng. Gas Turbines Power,
134(12), p. 122301.

[CrossRef]
Lee,
Y.
, and
Lee,
J. I.
, 2014, “
Structural Assessment of Intermediate Printed Circuit Heat Exchanger for Sodium-Cooled Fast Reactor With Supercritical CO

_{2} Cycle,” Ann. Nucl. Energy,
73, pp. 84–95.

[CrossRef]
Serrano,
I. P.
,
Cantizano,
A.
,
Linares,
J. I.
, and
Moratilla,
B. Y.
, 2014, “
Modeling and Sizing of the Heat Exchangers of a New Supercritical CO

_{2} Brayton Power Cycle for Energy Conversion for Fusion Reactors,” Fusion Eng. Des.,
89(9–10), pp. 1905–1908.

[CrossRef]
Besarati,
S. M.
,
Goswami,
D. Y.
, and
Stefanakos,
E. K.
, 2015, “
Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles,” ASME J. Sol. Energy Eng.,
137(3), p. 031018.

[CrossRef]
Bakhromkina,
A. A.
,
Shvarts,
A. L.
, and
Chugreev,
A. A.
, 2015, “
Development and Application of a New Type of Separators for Supercritical and Ultra-Supercritical Once-Through Boilers,” Power Technol. Eng.,
48(6), pp. 47–52.

[CrossRef]
Chen,
Z.
,
Wang,
G.
,
Yin,
F.
,
Chen,
H.
, and
Xu,
Y.
, 2015, “
A New System Design for Supercritical Water Oxidation,” Chem. Eng. J.,
269, pp. 343–351.

[CrossRef]
Bazargan,
M.
, and
Fraser,
D.
, 2009, “
Heat Transfer to Supercritical Water in a Horizontal Pipe: Modeling, New Empirical Correlation, and Comparison Against Experimental Data,” ASME J. Heat Transfer,
131(6), p. 061702.

[CrossRef]
Mokry,
S.
,
Pioro,
I.
,
Farah,
A.
,
King,
K.
,
Gupta,
S.
,
Peiman,
W.
, and
Kirillov,
P.
, 2011, “
Development of Supercritical Water Heat Transfer Correlation for Vertical Bare Tubes,” Nucl. Eng. Des.,
241(4), pp. 1126–1136.

[CrossRef]
Gupta,
S.
,
Saltanov,
E.
,
Mokry,
S. J.
,
Pioro,
I.
,
Trevani,
L.
, and
McGillivray,
D.
, 2013, “
Developing Empirical Heat Transfer Correlations for Supercritical CO

_{2} Flowing in Vertical Bare Tubes,” Nucl. Eng. Des.,
261, pp. 116–131.

[CrossRef]
Chen,
W.
, and
Fang,
X.
, 2014, “
A New Heat Transfer Correlation for Supercritical Water Flowing in Vertical Tubes,” Int. J. Heat Mass Transfer,
78, pp. 156–160.

[CrossRef]
Chen,
W.
,
Fang,
X.
,
Xu,
Y.
, and
Su,
X.
, 2015, “
An Assessment of Correlations of Forced Convection Heat Transfer to Water at Supercritical Pressure,” Ann. Nucl. Energy,
76, pp. 451–460.

[CrossRef]
Wang,
H.
,
Wang,
W.
,
Bi,
Q.
, and
Wang,
L.
, 2015, “
Experimental Study of Heat Transfer and Flow Resistance of Supercritical Pressure Water in a SCWR Sub-Channel,” J. Supercrit. Fluids,
100, pp. 15–25.

[CrossRef]
Hall,
W. B.
, and
Jackson,
J. D.
, 1969, “
Laminarization of a Turbulent Pipe Flow by Buoyancy Force,” ASME Paper No. 69-HT-55.

Jackson,
J. D.
, and
Hall,
W. B.
, 1979, “
Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions,” Turbulent Forced Convection in Channels and Bundles, Vol.
2,
S. Kakac
and
D. B. Spalding
, eds.,
Hemisphere,
New York, pp. 613–640.

Bazargan,
M.
,
Fraser,
D.
, and
Chatoorgan,
V.
, 2005, “
Effect of Buoyancy on Heat Transfer in Supercritical Water Flow in A Horizontal Round Tube,” ASME J. Heat Transfer,
127(8), pp. 897–902.

[CrossRef]
Lei,
X.
,
Li,
H.
,
Zhang,
Y.
, and
Zhang,
W.
, 2013, “
Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes,” ASME J. Heat Transfer,
135(7), p. 071703.

[CrossRef]
Sadr,
K. X.
, 2015, “
Experimental Investigation of Buoyancy Effects on Convection Heat Transfer of Supercritical CO_{2} Flow in a Horizontal Tube,” Heat Mass Transfer,
52(4), pp. 713–726.

He,
S.
,
Kim,
W. S.
,
Jiang,
P.-X.
, and
Jackson,
J. D.
, 2004, “
Simulation of Mixed Convection Heat Transfer to Carbon Dioxide at Supercritical Pressure,” J. Mech. Eng. Sci.,
218(11), pp. 1281–1296.

[CrossRef]
He,
S.
,
Jiang,
P. X.
,
Xu,
Y. J.
,
Shi,
R. F.
,
Kim,
W. S.
, and
Jackson,
J. D.
, 2005, “
A Computational Study of Convection Heat Transfer to CO

_{2} at Supercritical Pressures in a Vertical Mini Tube,” Int. J. Therm. Sci.,
44(6), pp. 521–530.

[CrossRef]
Sharabi,
M.
,
Ambrosini,
W.
,
He,
S.
, and
Jackson,
J. D.
, 2008, “
Prediction of Turbulent Convective Heat Transfer to a Fluid at Supercritical Pressure in Square and Triangular Channels,” Ann. Nucl. Energy,
35(6), pp. 993–1005.

[CrossRef]
Jiang,
P. X.
,
Zhang,
Y.
, and
Shi,
R. F.
, 2008, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO

_{2} at Supercritical Pressures in a Vertical Mini-Tube,” Int. J. Heat Mass Transfer,
51(11–12), pp. 3052–3056.

[CrossRef]
Jiang,
P. X.
,
Zhang,
Y.
,
Xu,
Y. J.
, and
Shi,
R. F.
, 2008, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO

_{2} at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers,” Int. J. Therm. Sci.,
47(8), pp. 998–1011.

[CrossRef]
He,
S.
,
Kim,
W. S.
, and
Bae,
J. H.
, 2008, “
Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube,” Int. J. Heat Mass Transfer,
51(19–20), pp. 4659–4675.

[CrossRef]
He,
S.
,
Kim,
W. S.
, and
Jackson,
J. D.
, 2008, “
A Computational Study of Convective Heat Transfer to Carbon Dioxide at a Pressure Just Above the Critical Value,” Appl. Therm. Eng.,
28(13), pp. 1662–1675.

[CrossRef]
Sharabi,
M.
, and
Ambrosini,
W.
, 2009, “
Discussion of Heat Transfer Phenomena in Fluids at Supercritical Pressure With the Aid of CFD Models,” Ann. Nucl. Energy,
36(1), pp. 60–71.

[CrossRef]
Licht,
J.
,
Anderson,
M.
, and
Corradini,
M.
, 2009, “
Heat Transfer and Fluid Flow Characteristics in Supercritical Pressure Water,” ASME J. Heat Transfer,
131(7), p. 072502.

[CrossRef]
Mohseni,
M.
, and
Bazargan,
M.
, 2010, “
The Effect of the Low Reynolds Number k-ε Turbulence Models on Simulation of the Enhanced and Deteriorated Convective Heat Transfer to the Supercritical Fluid Flows,” Heat Mass Transfer,
47(5), pp. 609–619.

[CrossRef]
Kruizenga,
A.
,
Li,
H.
,
Anderson,
M.
, and
Corradini,
M.
, 2012, “
Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels,” ASME J. Heat Transfer,
134(8), p. 081802.

[CrossRef]
Bazargan,
M.
, and
Mohseni,
M.
, 2012, “
Algebraic Zero-Equation Versus Complex Two-Equation Turbulence Modeling in Supercritical Fluid Flows,” Comput. Fluids,
60, pp. 49–57.

[CrossRef]
Yang,
Z.
,
Bi,
Q.
,
Wang,
H.
,
Wu,
G.
, and
Hu,
R.
, 2013, “
Experiment of Heat Transfer to Supercritical Water Flowing in Vertical Annular Channels,” ASME J. Heat Transfer,
135(4), p. 042504.

[CrossRef]
Yu,
S.
,
Li,
H.
,
Lei,
X.
,
Feng,
Y.
,
Zhang,
Y.
,
He,
H.
, and
Wang,
T.
, 2013, “
Influence of Buoyancy on Heat Transfer to Water Flowing in Horizontal Tubes Under Supercritical Pressure,” Appl. Therm. Eng.,
59(1–2), pp. 380–388.

[CrossRef]
Gang,
W.
,
Pan,
J.
,
Bi,
Q.
,
Yang,
Z.
, and
Wang,
H.
, 2014, “
Heat Transfer Characteristics of Supercritical Pressure Water in Vertical Upward Annuli,” Nucl. Eng. Des.,
273, pp. 449–458.

[CrossRef]
Zhang,
S.
,
Gu,
H.
,
Xiong,
Z.
, and
Gong,
S.
, 2014, “
Numerical Investigation on Heat Transfer of Supercritical Fluid in a Vertical 7-Rod Bundle,” J. Supercrit. Fluid,
92, pp. 8–15.

[CrossRef]
Wang,
K.
,
Xu,
X.
,
Wu,
Y.
,
Liu,
C.
, and
Dang,
C.
, 2015, “
Numerical Investigation on Heat Transfer of Supercritical CO

_{2} in Heated Helically Coiled Tubes,” J. Supercrit. Fluid,
99, pp. 112–120.

[CrossRef]
Podila,
K.
, and
Rao,
Y. F.
, 2015, “
CFD Analysis of Flow and Heat Transfer in Canadian Supercritical Water Reactor Bundle,” Ann. Nucl. Energy,
75, pp. 1–10.

[CrossRef]
Xiong,
J.
,
Cheng,
X.
, and
Yang,
Y.
, 2015, “
Numerical Analysis on Supercritical Water Heat Transfer in a 2 × 2 Rod Bundle,” Ann. Nucl. Energy,
80, pp. 123–134.

[CrossRef]
Lee,
S. H.
, and
Howell,
J. R.
, 1998, “
Turbulent Developing Convective Heat Transfer in a Tube for Fluids near the Critical Point,” Int. J. Heat Mass Transfer,
41(10), pp. 1205–1218.

[CrossRef]
Howell,
J. R.
, and
Lee,
S. H.
, 1999, “
Convective Heat Transfer in the Entrance Region of a Vertical Tube for Water Near The Thermodynamic Critical Point,” Int. J. Heat Mass Transfer,
42(7), pp. 1177–1187.

[CrossRef]
Dang,
C.
, and
Hihara,
E.
, 2004, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide, Part 2, Comparison of Numerical Calculation With Different Turbulence Models,” Int. J. Refrig.,
27(7), pp. 748–760.

[CrossRef]
Antonia,
R. A.
, and
Kim,
J.
, 1991, “
Turbulent Prandtl Number in the Near-Wall Region of a Turbulent Channel Flow,” Int. J. Heat Mass Transfer,
34(7), pp. 1905–1908.

[CrossRef]
Kays,
W. M.
, and
Crawford,
M. E.
, 1993, Convective Heat and Mass Transfer, 3rd ed.,
McGraw-Hill, New York.

McEligot,
D. M.
, and
Taylor,
M. F.
, 1996, “
The Turbulent Prandtl Number in the Near-Wall Region for Low-Prandtl-Number Gas Mixtures,” Int. J. Heat Mass Transfer,
39(6), pp. 1287–1295.

[CrossRef]
Kays,
W. M.
, 1994, “
Turbulent Prandtl Number—Where Are We?,” ASME J. Heat Transfer,
116(2), pp. 284–295.

[CrossRef]
Hollingsworth,
D. K.
,
Kays,
W. M.
, and
Moffat,
R. J.
, 1989, “
Measurement and Prediction of the Turbulent Thermal Boundary Layer in Water on Flat and Concave Surface,” Thermosciences division, Department of Mechanical Engineering, Stanford University, Stanford, CA, Report No. HMT-41.

Mohseni,
M.
, and
Bazargan,
M.
, 2011, “
Effect of Turbulent Prandtl Number on Convective Heat Transfer to Turbulent Flow of a Supercritical Fluid in a Vertical Round Tube,” ASME J. Heat Transfer,
133(7), p. 071701.

[CrossRef]
Oosthuizen,
P. H.
, and
Naylor,
D.
, 1999, An Introduction to Convective Heat Transfer Analysis,
McGraw-Hill,
New York.

Myong,
H. K.
, and
Kasagi,
N.
, 1990, “
A New Approach to the Improvement of k-ε Turbulence Model for Wall Bounded Shear Flows,” JSME Int. J.,
33, pp. 63–72.

Patankar,
S. V.
, 1980, Numerical Heat Transfer and Fluid Flow,
Taylor and Francis, Oxford, UK.

Versteeg,
H. K.
and
Malalasekera,
W.
, 2007, An Introduction to Computational Fluid Dynamic, The Finite Volume Method, 2nd ed.,
Longman Group Ltd., Harlow, UK.

Song,
J. H.
,
Kim,
H. Y.
,
Kim,
H.
, and
Bae,
Y. Y.
, 2008, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe,” J. Supercrit. Fluid,
44(2), pp. 164–171.

[CrossRef]
Shiralkar,
B. S.
, and
Griffith,
P.
, 1970, “
The Effect of Swirl, Inlet Condition, Flow Direction and Tube Diameter on Heat Transfer to Fluids at Supercritical Pressure,” ASME J. Heat Transfer,
92(3), pp. 465–474.

[CrossRef]
Jackson,
J. D.
,
Hall,
W. B.
,
Fewster,
J.
,
Watson,
A.
, and
Watts,
M. J.
, 1975, “
Heat Transfer to Supercritical Pressure Fluids,” Design Report No. 34.

Grabezhnaya,
V. A.
, and
Kirillov,
P. L.
, 2006, “
Heat Transfer Degradation Boundary in Supercritical Pressure Flow,” At. Energy,
101(4), pp. 262–270.

[CrossRef]
Grabezhnaya,
V. A.
, and
Kirillov,
P. L.
, 2006, “
Heat Transfer Under Supercritical Pressures and Heat Transfer Deterioration Boundaries,” Therm. Eng.,
53(4), pp. 296–301.

[CrossRef]
Kim,
J. K.
,
Jeon,
H. K.
,
Yoo,
J. Y.
, and
Lee,
J. S.
, 2005, “
Experimental Study on Heat Transfer Characteristics of Turbulent Supercritical Flow in Vertical Circular/Non-Circular Tubes,” 11th NURETH-11, Avignon, France, Oct. 2–6, 2005.

Yamagata,
K.
,
Nishikawa,
K.
,
Hasegawa,
S.
,
Fujii,
T.
, and
Yoshida,
S.
, 1972, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes,” Int. J. Heat Mass Transfer,
15(12), pp. 2575–2593.

[CrossRef]
Lemmon,
E. W.
,
Peskin,
A. P.
,
LcLinden,
M. O.
, and
Friend,
D. G.
, 2003, “
NIST 12: Thermodynamic and Transport Properties of Pure Fluids,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Standard Reference Database Number 12, Version 5.1.