Bejan,
A.
, 1997, Advanced Engineering Thermodynamics, 2nd ed.,
Wiley,
New York.

Bejan,
A.
, 1997, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume,” Int. J. Heat Mass Transfer,
40(4), pp. 799–811.

[CrossRef]
Marck,
G.
,
Harion,
J.-L.
,
Nemer,
M.
,
Russeil,
S.
, and
Bougeard,
D.
, 2011, “
A New Perspective of Constructal Networks Cooling a Finite-Size Volume Generating Heat,” Energy Convers. Manage.,
52(2), pp. 1033–1046.

[CrossRef]
Wu,
W. J.
,
Chen,
L. E.
, and
Sun,
F. R.
, 2007, “
On the Area to Point: Flow Problem Based on Constructal Theory,” Energy Convers. Manage,
48(1), pp. 101–105.

[CrossRef]
Ghodoossi,
L.
, and
Egrican,
N.
, 2003, “
Exact Solution for Cooling of Electronics Using Constructal Theory,” J. Appl. Phys.,
93(8), pp. 4922–4929.

[CrossRef]
Ghodoossi,
L.
, 2004, “
Conceptual Study on Constructal Theory,” Energy Convers. Manage.,
45(9–10), pp. 1379–1395.

[CrossRef]
Bejan,
A.
, and
Dan,
N.
, 1999, “
Constructal Trees of Convective Fins,” ASME J. Heat Transfer,
121(3), pp. 675–682.

[CrossRef]
Kraus,
A. D.
, 1988, “
Sixty-Five Years of Extended Surface Technology (1922–1987),” ASME Appl. Mech. Rev.,
41(9), pp. 321–364.

[CrossRef]
Gardner,
K. A.
, 1945, “
Efficiency of Extended Surfaces,” Am. Soc. Mech. Eng.,
67, pp. 621–631.

Murray,
W. M.
, 1938, “
Heat Transfer Through an Annular Disk or Fin of Uniform Thickness,” ASME J. Appl. Mech.,
60, pp. 78–80.

Alebrahim,
A.
, and
Bejan,
A.
, 1999, “
Constructal Trees of Circular Fins for Conductive and Convective Heat Transfer,” Int. J. Heat Mass Transfer,
42(19), pp. 3585–3597.

[CrossRef]
Bejan,
A.
, and
Almogbel,
M.
, 2000, “
Constructal T-Shaped Fins,” Int. J. Heat Mass Transfer,
43(12), pp. 2101–2115.

[CrossRef]
Almogbel,
M. A.
, 2005, “
Constructal Tree-Shaped Fins,” Int. J. Therm. Sci.,
44(4), pp. 342–348.

[CrossRef]
Lorenzini,
G.
, and
Moretti,
S.
, 2006, “
A CFD Application to Optimize T-Shaped Fins: Comparisons to the Constructal Theory's Results,” ASME J. Electron. Packag.,
129(3), pp. 324–327.

[CrossRef]
Lorenzini,
G.
, and
Rocha,
L. A. O.
, 2009, “
Constructal Design of T–Y Assembly of Fins for an Optimized Heat Removal,” Int. J. Heat Mass Transfer,
52(5–6), pp. 1458–1463.

[CrossRef]
Lorenzini,
G.
, and
Rocha,
L. A. O.
, 2006, “
Constructal Design of Y-Shaped Assembly of Fins,” Int. J. Heat Mass Transfer,
49(23–24), pp. 4552–4557.

[CrossRef]
Lorenzini,
G.
, and
Moretti,
S.
, 2007, “
Numerical Analysis on Heat Removal From Y-Shaped Fins: Efficiency and Volume Occupied for a New Approach to Performance Optimisation,” Int. J. Therm. Sci.,
46(6), pp. 573–579.

[CrossRef]
Lorenzini,
G.
, and
Moretti,
S.
, 2007, “
Numerical Analysis of Heat Removal Enhancement With Extended Surfaces,” Int. J. Heat Mass Transfer,
50(3–4), pp. 746–755.

[CrossRef]
Jones,
G. F.
, and
Chanda,
P.
, 2006, “
Thermal Optimization of a Composite Heat Spreader: Large High-Conductivity Blade Fraction,” 2006 International Heat Transfer Conference, Sydney, Australia.

Jones,
G. F.
, and
Ghassemi,
S.
, 2004, “
Thermal Optimization of a Composite Heat Spreader,” ASME Paper No. HT-FED2004-56609.

Kephart,
J.
, and
Jones,
G. F.
, 2013, “
Optimizing a Functionally Graded Metal-Matrix Heat Sink Through Growth of a Constructal Tree of Convective Fins,” ASME Paper No. HT2013-17384.

Bejan,
A.
, 2000, Shape and Structure, From Engineering to Nature,
Cambridge University Press,
New York.

Bejan,
A.
, and
Lorente,
S.
, 2008, Design With Constructal Theory,
Wiley,
Hoboken, NJ.

Nield,
D.
, and
Adrian,
A.
, 2013, Convection in Porous Media, 4th ed.,
A. Bejan
, ed.,
Springer,
New York.

Bejan,
A.
,
Lorente,
S.
, and
Rocha,
L. A. O.
, eds., 2013, Constructal Law and the Unifying Principle of Design,
Springer,
New York.

Maday,
C. J.
, 1974, “
Minimum Weight One-Dimensional Straight Cooling Fin,” ASME J. Eng. Ind.,
96(1), pp. 161–165.

[CrossRef]
Aziz,
A.
, 1992, “
Optimum Dimensions of Extended Surfaces Operating in a Convective Environment,” ASME Appl. Mech. Rev.,
45(5), pp. 155–173.

[CrossRef]
Hassell,
B.
, and
Ortega,
A.
, 2009, “
An Investigation of Scale Variation in Multi-Layer Mini- and Micro-Channel Heat Sinks in Single Phase Flow Using a Two Equation Porous Media Model,” ASME Paper No. HT2009-88423.

Hassell,
B.
, and
Ortega,
A.
, 2009, “
Analysis of Multi-Layer Mini- and Micro-Channel Heat Sinks in Single Phase Flow Using One and Two Equation Porous Media Models,” ASME Paper No. ICNMM2009-82022.

Ortega,
A.
,
Potluri,
K. S. H.
, and
Hassel,
B.
, 2011, “
An Investigation of Multi-Layer Mini-Channel Heat Sinks With Channel Geometric Scale Variation Suggested by Constructal Scaling Principles,” 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, Mar. 20–24, pp. 230a–230h.

West,
G. B.
,
Brown,
J. H.
, and
Enquist,
B. J.
, 1997, “
A General Model for the Origin of Allometric Scaling Laws in Biology,” Science,
276(5309), pp. 122–126.

[CrossRef] [PubMed]
Kephart,
J.
, and
Jones,
G. F.
, 2013, “
Optimizing a Functionally Graded Metal-Matrix Heat Sink Through Growth of a Constructal Tree of Convective Fins,” ASME Paper No. HT2013-17384.

Shah,
R. K.
, and
London,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data,” Advances in Heat Transfer,
Academic Press,
New York.

Dharaiya,
V. V.
, and
Kandlikar,
S. G.
, 2012, “
Numerical Investigation of Heat Transfer in Rectangular Microchannels Under H2 Boundary Condition During Developing and Fully Developed Laminar Flow,” ASME J. Heat Transfer,
134(2), p. 020911.

[CrossRef]
Lagarias,
J. C.
,
Reeds,
J. A.
,
Wright,
M. H.
, and
Wright,
P. E.
, 1998, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions,” SIAM J. Optim.,
9(1), pp. 112–147.

[CrossRef]
Nelder,
J. A.
, and
Mead,
R.
, 1965, “
A Simplex-Method for Function Minimization,” Comput. J.,
7(4), pp. 308–313.

[CrossRef]
Incropera,
F.
, and
DeWitt,
D.
, 2002, Fundamental of Heat and Mass Transfer, 5th ed,
Wiley,
New York.

Hassell,
B.
, and
Ortega,
A.
, 2011, “
Analysis of Multilayer Mini- and Microchannel Heat Sinks in Single-Phase Flow Using One- and Two-Equation Porous Media Models,” Heat Transfer Eng.,
32(7–8), pp. 566–574.

[CrossRef]
Podhiny,
J. J.
, and
Ortega,
A.
, 2013, “
Analysis of Single-Phase Multi-Layer Heat Sinks Using a Porous Media Approach: Influence of Spatially Varying Porosity,” ASME Paper No. IPACK2013-73189.