0
Research Papers: Micro/Nanoscale Heat Transfer

Thermal Diffraction of Binary Fluids With Metal Nanoparticles

[+] Author and Article Information
Heriberto Vasquez Carrasco, Steven Vallone, Joseph Hui

Department of Physics,
Queens College of the City
University of New York,
65-30 Kissena Boulevard,
Flushing, NY 11367

Matthew Moocarme

Department of Physics,
The Graduate Center of the City
University of New York,
365 5th Avenue,
New York, NY 10016;
Department of Physics,
Queens College of the City
University of New York,
65-30 Kissena Boulevard,
Flushing, NY 11367

Nicholas Proscia

Department of Physics,
The Graduate Center of the City
University of New York,
365 5th Avenue,
New York, NY 10016

Luat T. Vuong

Department of Physics,
The Graduate Center of the City
University of New York,
365 5th Avenue,
New York, NY 10016;
Department of Physics,
Queens College of the City
University of New York,
65-30 Kissena Boulevard,
Flushing, NY 11367
e-mail: luat.vuong@qc.cuny.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received August 19, 2015; final manuscript received March 26, 2016; published online May 10, 2016. Assoc. Editor: Laurent Pilon.

J. Heat Transfer 138(8), 082401 (May 10, 2016) (6 pages) Paper No: HT-15-1556; doi: 10.1115/1.4033328 History: Received August 19, 2015; Revised March 26, 2016

A laser propagating through a metal nanocolloid exhibits a far-field fringe pattern that is the signature of its optical and thermally induced response. Here, we directly exploit the sensitive far-field features to measure the thermo-optic coefficients of binary-solvent mixtures of ethanol and water. This study extends our fundamental understanding of the thermal self-diffraction toward future optical characterization of the nanocolloid fluid motion.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Boyd, R. W. , 2008, Nonlinear Optics, 3rd ed., Academic Press, Burlington, MA.
Caseri, W. , 2000, “ Nanocomposites of Polymers and Metals or Semiconductors: Historical Background and Optical Properties,” Macromol. Rapid Commun., 21(11), pp. 705–722. [CrossRef]
Arpin, K. A. , Mihi, A. , Johnson, H. T. , Baca, A. J. , Rogers, J. A. , Lewis, J. A. , and Braun, P. V. , 2010, “ Multidimensional Architectures for Functional Optical Devices,” Adv. Mater., 22(10), pp. 1084–1101. [CrossRef] [PubMed]
Kim, K. T. , Kim, I. S. , Lee, C. H. , and Lee, J. , 2012, “ A Temperature-Insensitive Cladding-Etched Fiber Bragg Grating Using a Liquid Mixture With a Negative Thermo-Optic Coefficient,” Sensors, 12(12), pp. 7886–7892. [CrossRef] [PubMed]
Geints, Y. E. , Panamarev, N. S. , and Zemlyanov, A. A. , 2011, “ Transient Behavior of Far-Field Diffraction Patterns of a Gaussian Laser Beam Due to the Thermo-Optical Effect in Metal Nanocolloids,” J. Opt., 13(5), p. 055707. [CrossRef]
Ma, Q. , Rossmann, T. , and Guo, Z. , 2010, “ Whispering-Gallery Mode Silica Microsensors for Cryogenic to Room Temperature Measurement,” Meas. Sci. Technol., 21(2), p. 025310. [CrossRef]
Baghery, M. , Koohian, A. , and Madanipour, K. , 2014, “ Numerical Analysis of Laser and Nanofluids Thermal Interaction,” Opt. Commun., 313, pp. 56–61. [CrossRef]
Ghosh, G. , 1998, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials With Applications (Handbook of Optical Constants of Solids), Elsevier Science, Amsterdam, The Netherlands.
Bergeon, A. , Henry, D. , Benhadid, H. , and Tuckerman, L. , 1998, “ Marangoni Convection in Binary Mixtures With Soret Effect,” J. Fluid Mech., 375, pp. 143–177. [CrossRef]
Zhang, J. , Behringer, R. P. , and Oron, A. , 2007, “ Marangoni Convection in Binary Mixtures,” Phys. Rev. E, 76(1), p. 016306. [CrossRef]
Franck, C. , and Schnatterly, S. E. , 1982, “ New Critical Anomaly Induced in a Binary Liquid Mixture by a Selectively Adsorbing Wall,” Phys. Rev. Lett., 48(11), pp. 763–766. [CrossRef]
Mialdun, A. , Yasnou, V. , Shevtsova, V. , Kniger, A. , Khler, W. , Alonso de Mezquia, D. , and Bou-Ali, M. M. , 2012, “ A Comprehensive Study of Diffusion, Thermodiffusion, and Soret Coefficients of Water-Isopropanol Mixtures,” J. Chem. Phys., 136(24), p. 244512. [CrossRef] [PubMed]
Marsh, K. , and Richards, A. , 1980, “ Excess Volumes for Ethanol + Water Mixtures at 10-K Intervals From 278.15 to 338.15 K,” Aust. J. Chem., 33(10), pp. 2121–2132. [CrossRef]
Liping, H. , Zhifen, L. , and Ruilin, L. , 1994, “ A Study on Binary Mixtures of Alcohols by Xe-129 NMR,” Acta Phys. Chim. Sin., 10(11), pp. 1026–1030.
Dixit, S. , Poon, W. C. K. , Crain, J. , Dixit, S. , and Poon, W. C. K. , 2000, “ Hydration of Methanol in Aqueous Solutions: A Raman Spectroscopic Study,” J. Phys.: Condens. Matter, 12(21).
Matsumoto, M. , Nishi, N. , Furusawa, T. , Saita, M. , Takamuku, T. , Yamagami, M. , and Yamaguchi, T. , 1995, “ Structure of Clusters in Ethanol-Water Binary Solutions Studied by Mass Spectrometry and X-Ray Diffraction,” Bull. Chem. Soc. Jpn., 68(7), pp. 1775–1783. [CrossRef]
Dominguez-Juarez, J. L. , Vallone, S. , Lempel, A. , Moocarme, M. , Oh, J. , Gafney, H. D. , and Vuong, L. T. , 2015, “ Influence of Solvent Polarity on Light-Induced Thermal Cycles in Plasmonic Nanofluids,” Optica, 2(5), pp. 447–453. [CrossRef]
Martinez-Reina, M. , Amado-Gonzalez, E. , and Gomez-Jaramillo, W. , 2015, “ Experimental Study and Modeling of the Refractive Indices in Binary and Ternary Mixtures of Water With Methanol, Ethanol and Propan-1-ol at 293.15 K,” J. Solution Chem., 44(2), pp. 206–222. [CrossRef]
Grossman, G. , and Ebert, K. , 1981, “ Formation of Clusters in 1-Propanol-Water-Mixtures,” Ber. Bunsen-Ges.-Phys. Chem. Chem. Phys., 85(11), pp. 1026–1029. [CrossRef]
Nagasaka, M. , Mochizuki, K. , Leloup, V. , and Kosugi, N. , 2014, “ Local Structures of Methanol-Water Binary Solutions Studied by Soft X-Ray Absorption Spectroscopy,” J. Phys. Chem. B, 118(16), pp. 4388–4396. [CrossRef] [PubMed]
Guimares, A. , Machado, F. , da Silva, E. , and Mansanares, A. , 2012, “ Thermal Effusivity and Thermal Conductivity of Biodiesel/Diesel and Alcohol/Water Mixtures,” Int. J. Thermophys., 33(10–11), pp. 1842–1847. [CrossRef]
Arnaud, N. , and Georges, J. , 2001, “ Investigation of the Thermal Lens Effect in Water-Ethanol Mixtures: Composition Dependence of the Refractive Index Gradient, the Enhancement Factor and the Soret Effect,” Spectrochim. Acta, Part A, 57(6), pp. 1295–1301. [CrossRef]
Kim, Y. H. , Park, S. J. , Jeon, S.-W. , Ju, S. , Park, C.-S. , Han, W.-T. , and Lee, B. H. , 2012, “ Thermo-Optic Coefficient Measurement of Liquids Based on Simultaneous Temperature and Refractive Index Sensing Capability of a Two-Mode Fiber Interferometric Probe,” Opt. Express, 20(21), pp. 23744–23754. [CrossRef] [PubMed]
Kamikawachi, R. , Abe, I. , Paterno, A. , Kalinowski, H. , Muller, M. , Pinto, J. , and Fabris, J. , 2008, “ Determination of Thermo-Optic Coefficient in Liquids With Fiber Bragg Grating Refractometer,” Opt. Commun., 281(4), pp. 621–625. [CrossRef]
Lee, C.-L. , Ho, H.-Y. , Gu, J.-H. , Yeh, T.-Y. , and Tseng, C.-H. , 2015, “ Dual Hollow Core Fiber-Based Fabry–Perot Interferometer for Measuring the Thermo-Optic Coefficients of Liquids,” Opt. Lett., 40(4), pp. 459–462. [CrossRef] [PubMed]
Pilla, V. , Munin, E. , and Gesualdi, M. R. R. , 2009, “ Measurement of the Thermo-Optic Coefficient in Liquids by Laser-Induced Conical Diffraction and Thermal Lens Techniques,” J. Opt. A: Pure Appl. Opt., 11(10), p. 105201. [CrossRef]
Sheldon, S. J. , Knight, L. V. , and Thorne, J. M. , 1982, “ Laser-Induced Thermal Lens Effect: A New Theoretical Model,” Appl. Opt., 21(9), pp. 1663–1669. [CrossRef] [PubMed]
Jensen, T. R. , Schatz, G. C. , and Van Duyne, R. P. , 1999, “ Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet visible Extinction Spectroscopy and Electrodynamic Modeling,” J. Phys. Chem. B, 103(13), pp. 2394–2401. [CrossRef]
Goodman, J. , 1996, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, New York.
Gordon, J. P. , Leite, R. C. C. , Moore, R. S. , Porto, S. P. S. , and Whinnery, J. R. , 1965, “ Long Transient Effects in Lasers With Inserted Liquid Samples,” J. Appl. Phys., 36(1), pp. 3–8. [CrossRef]
Wesfreid, J. , Burgos, A. , Mancini, H. , and Quel, E. , 1977, “ Calculation of the Focal Length of a Thermal Lens Inside a Laser Cavity,” Opt. Commun., 21(3), pp. 413–418. [CrossRef]
Artiglia, M. , Coppa, G. , Di Vita, P. , Potenza, M. , and Sharma, A. , 1989, “ Mode Field Diameter Measurements in Single-Mode Optical Fibers,” J. Lightwave Technol., 7(8), pp. 1139–1152. [CrossRef]
Eastman, J. A. , Choi, S. U. S. , Li, S. , Yu, W. , and Thompson, L. J. , 2001, “ Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Appl. Phys. Lett., 78(6), pp. 718–720. [CrossRef]
Buongiorno, J. , 2005, “ Convective Transport in Nanofluids,” ASME J. Heat Transfer, 128(3), pp. 240–250. [CrossRef]
Karimzadeh, R. , 2012, “ Spatial Self-Phase Modulation of a Laser Beam Propagating Through Liquids With Self-Induced Natural Convection Flow,” J. Opt., 14(9), p. 095701. [CrossRef]
Ji, W. , Chen, W. , Lim, S. , Lin, J. , and Guo, Z. , 2006, “ Gravitation-Dependent, Thermally-Induced Self-Diffraction in Carbon Nanotube Solutions,” Opt. Express, 14(20), pp. 8958–8966. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Beam parameters and nomenclature. A Gaussian beam with mode field radius w(z) illuminates a nanofluid sample of length d from the left.

Grahic Jump Location
Fig. 2

Top-view schematic of the optical setup (not drawn to scale). Light from the laser is transmitted through a half-wave plate and LP prior to the nanofluid or nanocolloid sample, where s is the distance between the sample and camera.

Grahic Jump Location
Fig. 3

CCD images of the diffraction patterns in the far-field plane. The mode field radius is calculated along the horizontal (blue) and vertical (red) line-outs across the patterns. The far-field diffraction patterns are shown for (a) 0.15 ethanol concentration and 100 mW average power, (b) 0.15 ethanol concentration and 200 mW average power, (c) 0.30 ethanol concentration and 100 mW average power, and (d) 0.30 ethanol concentration and 200 mW illumination power.

Grahic Jump Location
Fig. 4

Aspect ratios of the far-field fringe patterns versus ethanol concentration. The ratio approaches linear behavior at higher powers and exhibits a jump at lower powers, which could represent the onset of nanofluid convective flows.

Grahic Jump Location
Fig. 5

Defocusing angle θdef as a function of average applied illumination power. The slope of the linear trend is proportional to the calculated thermo-optic coefficient.

Grahic Jump Location
Fig. 6

The calculated thermo-optic coefficients dn/dT from this investigation compared to Arnaud's experimental results. The values deviate at ethanol fractions above 20%, where sharp changes in aspect ratio are also measured (Fig. 4).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In