This paper presents a study of the conjugate heat transfer, involving conduction through a solid slab and turbulent convection in fluid, for a combined turbulent wall jet and offset jet flow using unsteady Reynolds averaged Navier–Stokes (URANS) equations. The conduction equation for the solid slab and convection equation for the fluid region are solved simultaneously satisfying the equality of temperature and heat flux at the solid–fluid interface. The fluid flow is complex because of the existence of periodically unsteady interaction between the two jets for the chosen ratio of jets separation distance to the jet width (i.e., d/w = 1). The heat transfer characteristics at the solid–fluid interface have been investigated by varying various important parameters within a feasible range: Reynolds number (Re = 10,000–20,000), Prandtl number (Pr = 1–4), solid-to-fluid thermal conductivity ratio (k_{s}/k_{f} = 1000–4000), and nondimensional solid slab thickness (s/w = 1–10). The bottom surface of the solid slab has been maintained at a constant temperature. The mean conjugate heat transfer characteristics indicate that the mean local Nusselt number along the interface is a function of flow (Re) as well as fluid (Pr) properties but is independent of solid properties (k_{s} and s). However, the mean interface temperature and mean local heat flux along the interface always depend on all the aforementioned properties.