0
Research Papers: Heat Transfer Enhancement

Nanoparticle Dispersions on Ternary Nitrate Salts for Heat Transfer Fluid Applications in Solar Thermal Power

[+] Author and Article Information
Ramaprasath Devaradjane

Department of Mechanical and
Aerospace Engineering,
The University of Texas at Arlington,
Arlington, TX 76019-0023

Donghyun Shin

Department of Mechanical and
Aerospace Engineering,
The University of Texas at Arlington,
Arlington, TX 76019-0023
e-mail: shin@uta.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 22, 2014; final manuscript received May 11, 2015; published online February 3, 2016. Assoc. Editor: Bruce L. Drolen.

J. Heat Transfer 138(5), 051901 (Feb 03, 2016) (5 pages) Paper No: HT-14-1231; doi: 10.1115/1.4030903 History: Received April 22, 2014

In this study, we report enhancement in heat capacity of SiO2 nanoparticle dispersions in a molten ternary nitrate salt (NaNO3, KNO3, and Ca(NO3)2) to obtain an effective heat transfer fluid (HTF)/thermal energy storage (TES) for concentrated solar power (CSP) application. The enhanced heat capacity of the molten salt mixture is expected to greatly increase thermal storage density of HTF/TES, and thus the cost of electricity produced by CSP plant can be significantly reduced. A custom two-step method was used to synthesize SiO2 nanoparticle/ternary salt mixture. The nanoparticle concentration of the mixture was fixed at 1% by weight for comparison with the previous studies. A modulated differential scanning calorimeter (MDSC) was employed to measure heat capacity of the mixture, and it was found to be enhanced by ∼19% compared to the pure ternary salt.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Quaschning, V. , and Muriel, M. , 2011, “Solar Power—Photovoltaics or Solar Thermal Power Plants?,” VGB Congress Power Plants 2001, Brussels, Oct. 10–12.
Solana Generating Station, 2013, “Concentrating Solar Power Projects,” National Renewable Energy Laboratory (NREL), Feb. 23, 2013, retrieved July 22, 2013.
Janz, G. , Allen, C. , Bansal, N. , Murphy, R. , and Tomkins, R. , 1979, Physical Properties Data Compilations Relevant to Energy Storage, U.S. Department of Commerce, National Bureau of Standards, Washington, DC.
Choi, U. S. , 1995, “Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Developments and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66, D. A. Siginer and H. P. Wang , eds., ASME, New York, pp. 99–105.
Xuan, Y. , and Li, Q. , 2000, “Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Fluid Flow, 21(1), pp. 58–64. [CrossRef]
Murshed, S. M. S. , Leong, K. C. , and Yang, C. , 2005, “Enhanced Thermal Conductivity of TiO2–Water Based Nanofluids,” Int. J. Therm. Sci., 44(4), pp. 367–373. [CrossRef]
Choi, S. U. S. , Zhang, Z. G. , Lockwood, F. E. , and Grulke, E. A. , 2001, “Anomalous Thermal Conductivity Enhancement in Nanotubes Suspensions,” Appl. Phys. Lett., 79(14), pp. 2252–2254. [CrossRef]
Kang, H. U. , Kim, S. H. , and Oh, J. M. , 2006, “Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume,” Exp. Heat Transfer, 19(3), pp. 181–191. [CrossRef]
Das, S. K. , Putra, N. , Thiesen, P. , and Roetzel, W. , 2003, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer, 125(4), pp. 567–574. [CrossRef]
Patel, H. E. , Das, S. K. , Sundararajan, T. , Nair, A. S. , Geoge, B. , and Pradeep, T. , 2003, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,” Appl. Phys. Lett., 83(14), pp. 2931–2933. [CrossRef]
Xuan, Y. , and Roetzel, W. , 2000, “Conceptions for Heat Transfer Correlation of Nanofluids,” Int. J. Heat Mass Transfer, 43(19), pp. 3701–3707. [CrossRef]
Keblinski, P. , Phillpot, S. R. , Choi, S. U. S. , and Eastman, J. A. , 2002, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Int. J. Heat Mass Transfer, 45(4), pp. 855–863. [CrossRef]
Kumar, D. H. , Patel, H. E. , Kumar, V. R. R. , Sundararajan, T. , Pradeep, T. , and Das, S. K. , 2004, “Model for Heat Conduction in Nanofluids,” Phys. Rev. Lett., 93(14), p. 144301. [CrossRef] [PubMed]
Jang, S. P. , and Choi, S. U. S. , 2004, “Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Appl. Phys. Lett., 84(21), pp. 4316–4318. [CrossRef]
Prasher, R. , Bhattacharya, P. , and Phelan, P. E. , 2006, “Brownian-Motion-Based Convective–Conductive Model for the Effective Thermal Conductivity of Nanofluids,” ASME J. Heat Transfer, 128(6), pp. 588–595. [CrossRef]
Patel, H. E. , Sundararajan, T. , and Das, S. K. , 2008, “A Cell Model Approach for Thermal Conductivity of Nanofluids,” J. Nanopart. Res., 10(1), pp. 87–97. [CrossRef]
Buongiorno, J. , Venerus, D. C. , Prabhat, N. , McKrell, T. , Townsend, J. , Christianson, R. , Tolmachev, Y. V. , Keblinski, P. , Hu, L. , Alvarado, J. L. , Bang, I. C. , Bishnoi, S. W. , Bonetti, M. , Botz, F. , Cecere, A. , Chang, Y. , Chen, G. , Chen, H. , Chung, S. J. , Chyu, M. K. , Das, S. K. , Di Paola, R. , Ding, Y. , Dubois, F. , Dzido, G. , Eapen, J. , Escher, W. , Funfschilling, D. , Galand, Q. , Gao, J. , Gharagozloo, P. E. , Goodson, K. E. , Gutierrez, J. G. , Hong, H. , Horton, M. , Hwang, K. S. , Iorio, C. S. , Jang, S. P. , Jarzebski, A. B. , Jiang, Y. , Jin, L. , Kabelac, S. , Kamath, A. , Kedzierski, M. A. , Kieng, L. G. , Kim, C. , Kim, J.-H. , Kim, S. , Lee, S. H. , Leong, K. C. , Manna, I. , Michel, B. , Ni, R. , Patel, H. E. , Philip, J. , Poulikakos, D. , Reynaud, C. , Savino, R. , Singh, P. K. , Song, P. , Sundararajan, T. , Timofeeva, E. , Tritcak, T. , Turanov, A. N. , Vaerenbergh, S. V. , Wen, D. , Witharana, S. , Yang, C. , Yeh, W.-H. , Zhao, X.-Z. , and Zhou, S.-Q. , 2009, “A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p. 094312. [CrossRef]
Keblinski, P. , Prasher, R. , and Eapen, J. , 2008, “Thermal Conductance of Nanofluids: Is the Controversy Over?,” J. Nanopart. Res., 10(7), pp. 1089–1097. [CrossRef]
Evans, W. , Prasher, R. , Fish, J. , Meakin, P. , Phelan, P. , and Keblinski, P. , 2008, “Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposite and Colloidal Nanofluids,” Int. J. Heat Mass Transfer, 51(5–6), pp. 1431–1438. [CrossRef]
Namburu, P. , Kulkarni, D. , Dandekar, A. , and Das, D. , 2007, “Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids,” Micro Nano Lett., 2(3), pp. 67–71. [CrossRef]
Zhou, S. , and Ni, R. , 2008, “Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid,” Appl. Phys. Lett., 92(9), p. 093123. [CrossRef]
Vajjha, R. S. , and Das, D. K. , 2009, “Specific Heat Measurement of Three Nanofluids and Development of New Correlations,” ASME J. Heat Transfer, 131(7), p. 071601. [CrossRef]
Shin, D. , and Banerjee, D. , 2011, “Enhanced Specific Heat of Silica Nanofluid,” ASME J. Heat Transfer, 133(2), p. 024501. [CrossRef]
Bridges, N. , Visser, A. , and Fox, E. B. , 2011, “Potential of Nanoparticle-Enhanced Ionic Liquids (NEILs) as Advanced Heat-Transfer Fluids,” Energy Fuels, 25(10), pp. 4862–4864. [CrossRef]
Shin, D. , and Banerjee, D. , 2011, “Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications,” Int. J. Heat Mass Transfer, 54(5–6), pp. 1064–1070. [CrossRef]
Shin, D. , and Banerjee, D. , 2013, “Enhanced Specific Heat Capacity of Nanomaterials Synthesized by Dispersing Silica Nanoparticles in Eutectic Mixtures,” ASME J. Heat Transfer, 135(3), p. 032801. [CrossRef]
Dudda, B. , and Shin, D. , 2013, “Effect of Nanoparticle Dispersion on Specific Heat Capacity of a Binary Nitrate Salt Eutectic for Concentrated Solar Power Applications,” Int. J. Therm. Sci., 69, pp. 37–42. [CrossRef]
Tiznobaik, H. , and Shin, D. , 2013, “Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids,” Int. J. Heat Mass Transfer, 57(2), pp. 542–548. [CrossRef]
Tiznobaik, H. , and Shin, D. , 2013, “Experimental Validation of Enhanced Heat Capacity of Ionic Liquid-Based Nanomaterial,” Appl. Phys. Lett., 102(17), p. 173906. [CrossRef]
Shin, D. , Tiznobaik, H. , and Banerjee, D. , 2014, “Specific Heat Mechanism of Molten Salt Nanofluids,” Appl. Phys. Lett., 104(12), p. 121914. [CrossRef]
Shin, D. , and Banerjee, D. , 2014, “Specific Heat of Nanofluids Synthesized by Dispersing Alumina Nanoparticles in Alkali Salt Eutectic,” Int. J. Heat Mass Transfer, 74, pp. 210–214. [CrossRef]
Betts, M. , 2011, “The Effects of Nanoparticle Augmentation of Nitrate Thermal Storage Materials for Use in Concentrating Solar Power Applications,” M.S. thesis, Texas A&M University, College Station, TX.
Seo, J. , and Shin, D. , 2014, “Enhancement of Specific Heat of Ternary Nitrate (LiNO3-NaNO3-KNO3) Salt by Doping With SiO2 Nanoparticles for Solar Thermal Energy Storage,” Micro Nano Lett., 9(11), pp. 817–820. [CrossRef]
Andreu-Cabedo, P. , Mondragon, R. , Hernandez, L. , Martinez-Cuenca, R. , Cabedo, L. , and Julia, J. E. , 2013, “Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage,” Nanoscale Res. Lett., 9(1), pp. 1–11.
Chieruzzi, M. , Cerritelli, G. F. , Miliozzi, A. , and Kenny, J. M. , 2013, “Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage,” Nanoscale Res. Lett., 8(1).
Ho, M. , and Pan, C. , 2014, “Optimal Concentration of Alumina Nanoparticles in Molten Hitec Salt to Maximize Its Specific Heat Capacity,” Int. J. Heat Mass Transfer, 70, pp. 174–184. [CrossRef]
Zhichao, L. , Qiang, Z. , and Gaohui, W. , 2015, “Preparation and Enhanced Heat Capacity of Nano-Titania Doped Erythritol as Phase Change Material,” Int. J. Heat Mass Transfer, 80, pp. 653–659. [CrossRef]
Buongiorno, J. , 2006, “Convective Transport in Nanofluids,” ASME J. Heat Transfer, 128(3), pp. 240–250. [CrossRef]
Salanne, M. , and Madden, P. A. , 2011, “Polarization Effects in Ionic Solids and Melts,” Mol. Phys., 109(19), pp. 2299–2315. [CrossRef]
Chakraborty, B. , Wang, J. , and Eapen, J. , 2013, “Multicomponent Diffusion in Molten LiCl-KCl: Dynamical Correlations and Divergent Maxwell-Stefan Diffusivities,” Phys. Rev. E, 87, p. 052312. [CrossRef]
Malik, D. , 2010, “Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for Use in Concentrating Solar Power Plants,” M.S. thesis, Texas A&M University, College Station, TX.

Figures

Grahic Jump Location
Fig. 1

Nanofluid synthesis process

Grahic Jump Location
Fig. 2

Variation of heat capacity with temperature for ternary salt and nanofluids

Grahic Jump Location
Fig. 3

SEM image of pure ternary nitrate salt

Grahic Jump Location
Fig. 4

SEM image of ternary nitrate salt doped with nanoparticles (nanofluid) showing weblike structures at nanoscale

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In