0
Research Papers: Melting and Solidification

Low-Temperature Melting of Silver Nanoparticles in Subcooled and Saturated Water

[+] Author and Article Information
Soochan Lee

School for Engineering of Matter,
Transport and Energy,
Arizona State University,
501 E Tyler Mall, ECG 303,
Tempe, AZ 85287-6106
e-mail: slee207@asu.edu

Patrick E. Phelan

School for Engineering of Matter,
Transport and Energy,
Arizona State University,
501 E Tyler Mall, ECG 303,
Tempe, AZ 85287-6106
e-mail: phelan@asu.edu

Robert A. Taylor

School of Mechanical and
Manufacturing Engineering,
University of New South Wales,
Sydney 2052, Australia
e-mail: robert.taylor@unsw.edu.au

Ravi Prasher

School for Engineering of Matter,
Transport and Energy,
Arizona State University,
501 E Tyler Mall, ECG 303,
Tempe, AZ 85287-6106
e-mail: prasher.ravi@gmail.com

Lenore Dai

School for Engineering of Matter,
Transport and Energy,
Arizona State University,
501 E Tyler Mall, ECG 273,
Tempe, AZ 85287-6106
e-mail: lenore.dai@asu.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 29, 2015; final manuscript received October 19, 2015; published online January 27, 2016. Assoc. Editor: Wilson K. S. Chiu.

J. Heat Transfer 138(5), 052301 (Jan 27, 2016) (7 pages) Paper No: HT-15-1233; doi: 10.1115/1.4032310 History: Received March 29, 2015; Revised October 19, 2015

Continuous, laser-heated boiling heat transfer experiments with silver nanofluids were conducted to identify the nonequilibrium melting behavior of silver nanoparticles in de-ionized (DI) water. Experimental results with transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that surface melting of silver nanoparticles (which have a bulk melting point of 961 °C) can occur at ambient pressure when particles are suspended in saturated, and even subcooled (e.g., <100 °C) water due to the localized (volumetric) heat absorption. These findings are supported by calculating a temperature-dependent Hamaker constant of silver nanofluid—i.e., the interaction between interfaces (Ag-melt-water) at the melting temperature. This finding is significant because of the difficulty to identify the melting of silver nanoparticles in water at present, even though it is important to understand such potential melting to use aqueous silver nanofluids in solar applications.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Barber, J. , Brutin, D. , and Tadrist, L. , 2011, “ A Review on Boiling Heat Transfer Enhancement With Nanofluids,” Nanoscale Res. Lett., 6(1), pp. 1–16. [CrossRef]
Thomas, S. , and Sobhan, C. B. P. , 2011, “ A Review of Experimental Investigations on Thermal Phenomena in Nanofluids,” Nanoscale Res. Lett., 6(1), pp. 1–21. [CrossRef]
Taylor, R. A. , Phelan, P. E. , Otanicar, T. , Adrian, R. J. , and Prasher, R. S. , 2009, “ Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser,” Appl. Phys. Lett., 95(16), p. 161907. [CrossRef]
Taylor, R. , Coulombe, S. , Otanicar, T. , Phelan, P. , Gunawan, A. , Lv, W. , Rosengarten, G. , Prasher, P. , and Tyagi, H. J. , 2013, “ Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids,” Appl. Phys., 113(1), p. 011301. [CrossRef]
Phelan, P. , Otanicar, T. , Taylor, R. , and Tyagi, H. , 2013, “ Trends and Opportunities in Solar Thermal Collectors,” J. Therm. Sci. Eng. Appl., 5(2), pp. 021003–021012. [CrossRef]
Taylor, R. A. , Phelan, P. E. , Otanicar, P. T. , Adrian, R. , and Prasher, R. , 2011, “ Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors,” Nanoscale Res. Lett., 6(1), pp. 1–11. [CrossRef]
Taylor, R. A. , Phelan, P. E. , Adrian, R. , Gunawan, A. , and Otanicar, P. T. , 2012, “ Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids,” Int. J. Thermal Sci., 56, pp. 1–11. [CrossRef]
Neumann, O. , Urban, A. S. , Day, J. , Lal, S. , Nordlander, P. , and Halas, N. J. , 2013, “ Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano, 7(1), pp. 42–49. [CrossRef] [PubMed]
Fang, Z. , Zhen, Y.-R. , Neumann, O. , Polman, A. , Garcia de Abajo, F. J. , Nordlander, P. , and Halas, N. J. , 2013, “ Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett., 13(4), pp. 1736–1742. [CrossRef] [PubMed]
Yonezawa, T. , Arai, S. , Takeuchi, H. , Kamino, T. , and Kuroda, K. , 2012, “ Preparation of Naked Silver Nanoparticles in a TEM Column and Direct In Situ Observation of Their Structural Changes at High Temperature,” Chem. Phys. Lett., 537, pp. 65–68. [CrossRef]
Qin, Y. , Hu, M. , Li, H. , Zhang, Z. , and Zou, Q. , 2007, “ Preparation and Field Emission Properties of Carbon Nanotubes Cold Cathode Using Melting Ag Nano-Particles as Binder,” Appl. Surf. Sci., 253(8), pp. 4021–4024. [CrossRef]
Sun, J. , and Simon, S. L. , 2007, “ The Melting Behavior of Aluminum Nanoparticles,” Thermochim. Acta., 463(1–2), pp. 32–40. [CrossRef]
Nanda, K. K. , 2009, “ Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model,” J. Phys., 72, pp. 617–628.
Drelich, J. , 2013, “ Nanoparticles in a Liquid: New State of Liquid?,” J. Nanomater. Mol. Nanotechnol., 2(1), pp. 1–2. [CrossRef]
Chen, C. L. , Lee, J.-G. , Arakawa, K. , and Mori, H. , 2010, “ In Situ Observations of Crystalline-to-Liquid and Crystalline-to-Gas Transitions of Substrate-Supported Ag Nanoparticles,” Appl. Phys. Lett., 96(25), p. 253104. [CrossRef]
Pinchuk, A. O. , 2012, “ Size-Dependent Hamaker Constant for Silver Nanoparticles,” J. Phys. Chem. C, 116(37), pp. 20099–20102. [CrossRef]
French, R. H. , Cannon, R. M. , DeNoyer, L. K. , and Chiang, Y.-M. , 1995, “ Full Spectral Calculation of Non-Retarded Hamaker Constants for Ceramic Systems From Interband Transition Strengths,” Solid State Ionics, 75, pp. 13–33. [CrossRef]
Chen, X. J. , Levi, A. C. , and Tosatti, E. , 1991, “ Hamaker Constant Calculations and Surface Melting of Metals,” Surf. Sci., 251–252, pp. 641–644. [CrossRef]
Bohren, C. F. , and Huffman, D. R. , 1998, Absorption and Scattering of Light by Small Particles, Wiley, New York.
Israelachvili, J. , 2011, Intermolecular and Surface Forces, 3rd ed., Academic, Boston, MA.
Otanicar, P. T. , Phelan, P. E. , Prasher, S. R. , Rosengarten, G. , and Taylor, R. A. , 2010, “ Nanofluid-Based Direct Absorption Solar Collector,” J. Renewable Sustainable Energy, 2(3), p. 033102. [CrossRef]
Hale, G. M. , and Query, M. R. , 1973, “ Optical Constants of Water in the 200 nm to 200 μm Wavelength Region,” Appl. Opt., 12(3), pp. 555–558. [CrossRef] [PubMed]
Palik, E. D. , 1985, Handbook of Optical Constants of Solids, Academic, Orlando, FL.
Schiebener, P. , Straub, J. , Levelt Sengers, J. M. H. , and Gallagher, J. S. , 1990, “ Refractive Index of Water and Steam as Function of Wavelength, Temperature, and Density,” J. Phys. Chem. Ref. Data, 19(3), pp. 677–717. [CrossRef]
Schmid, M. , Zehnder, S. , Schwaller, P. , Neuenschwander, B. , Zurcher, J. , and Hunziker, U. , 2013, “ Measuring the Complex Refractive Index of Metals in the Solid and Liquid State and Its Influence on the Laser Machining,” Proc. SPIE, 8607, p. 86071I.
Bruckner, M. , Schafer, J. H. , Schiffer, C. , and Uhlenbusch, J. , 1991, “ Measurement of the Optical Constants of Solid and Molten Gold and Tin at λ = 10.6 μm,” J. Appl. Phys., 70(3), pp. 1642–1647. [CrossRef]
Bruckner, M. , Schafer, J. H. , and Uhlenbusch, J. , 1989, “ Ellipsometric Measurement of the Optical Constants of Solid and Molten Aluminum and Copper at λ = 10.6 μm,” J. Appl. Phys., 66(3), pp. 1326–1332. [CrossRef]
Matula, R. A. , 1979, “ Electrical Resistivity of Copper, Gold, Palladium, and Silver,” J. Phys. Chem. Ref. Data, 4, pp. 1257–1297.
Olson, E. A. , Efremov, N. Y. , Zhang, M. , Zhang, Z. , and Allen, L. H. , 2005, “ Size-Dependent Melting of Bi Nanoparticles,” J. Appl. Phys., 97(3), p. 034304. [CrossRef]
Lee, S. , Phelan, P. E. , Dai, L. , Prasher, R. , Gunawan, A. , and Taylor, R. A. , 2014, “ Experimental Investigation of the Latent Heat of Vaporization in Aqueous Nanofluids,” Appl. Phys. Lett., 104(15), p. 151908. [CrossRef]
Lee, S. , Taylor, R. A. , Dai, L. , Prasher, R. , and Phelan, P. E. , 2015, “ The Effective Latent Heat of Aqueous Nanofluids,” Mater. Res. Express, 2(6), p. 065004. [CrossRef]
Gontard, L. C. , Ozkaya, D. , and Dunin-Borkowsk, R. E. , 2011, “ A Simple Algorithm for Measuring Particle Size Distributions on an Uneven Background From TEM Images,” Ultramicroscopy, 111(2), pp. 101–106. [CrossRef] [PubMed]
Lai, W. Y. , Vinod, S. , Phelan, P. E. , and Prasher, R. , 2009, “ Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube,” ASME J. Heat Transfer, 131(11), pp. 112401–112409. [CrossRef]
Lee, S. , 2015, “ A Study of Latent Heat of Vaporization in Aqueous Nanofluids,” Ph.D. thesis, Arizona State University, Tempe, AZ.
Krishnamurthy, S. , Bhattacharya, P. , Phelan, P. E. , and Prasher, R. S. , 2006, “ Enhanced Mass Transport in Nanofluids,” Nano Lett., 6(3), pp. 419–423. [CrossRef] [PubMed]
Elimelech, M. , Gregory, J. , Jia, X. , and Willianms, R. , 1998, Particle Deposition and Aggregation: Measurement, Modeling and Simulation, Butterworth-Heinemann, UK.
Novotny, L. , and Hecht, B. , 2006, Principles of Nano Optics, Cambridge University Press, New York.
Tang, C. , Sung, Y.-M. , and Junho, L. , 2012, “ Nonlinear Size-Dependent Melting of the Silica-Encapsulated Silver Nanoparticles,” J. Appl. Phys. Lett., 100(20), p. 201903. [CrossRef]
Bharadwaj, P. S. , 2012, “ Silver or Silver Nanoparticle a Safety or a Risk,” J. Environ. Res. Dev., 7, pp. 452–456.

Figures

Grahic Jump Location
Fig. 1

Modeled geometry of surface melting of silver nanoparticles in water [15]: (a) actual spherical geometry and (b) modeled planar geometry

Grahic Jump Location
Fig. 2

(a) Schematic diagram of setup for boiling experiment of silver nanofluid with laser input and (b) schematic representation of test cell with thermal and optical processes

Grahic Jump Location
Fig. 3

TEM images of 0.1% by volume, 20 nm Ag particles (a) before heating, (b) after laser heating in subcooled fluid, and (c) after laser heating in saturated fluid

Grahic Jump Location
Fig. 4

Histograms of PSDs measured from the TEM images in Fig. 3 of (a) before heating Ag nanoparticles, (b) after laser heating in subcooled fluid, and (c) after laser heating in saturated fluid

Grahic Jump Location
Fig. 5

Volume weight-based Ag nanoparticles distribution measured with DLS, the Nicomp 380/ZLS, PSD of 0.1% by volume, 20 nm, Ag nanofluid (a) before heating, (b) after laser heating in subcooled fluid, and (c) after laser heating in saturated fluid

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In