Bejan,
A.
, 2013, Convection Heat Transfer, 4th ed.,
Wiley,
Hoboken, NJ.

Prasad,
A. K.
, and
Koseff,
J. R.
, 1989, “
Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow,” Phys. Fluids A,
1(2), pp. 208–218.

[CrossRef]
Prasad,
A. K.
, and
Koseff,
J. R.
, 1996, “
Combined Forced and Natural Convection Heat Transfer in a Deep Lid-Driven Cavity Flow,” Int. J. Heat Fluid Flow,
17(5), pp. 460–467.

[CrossRef]
dos Santos,
E. D.
,
Piccoli,
G. L.
,
França,
F. H. R.
, and
Petry,
A. P.
, 2011, “
Analysis of Mixed Convection in Transient Laminar and Turbulent Flows in Driven Cavities,” Int. J. Heat Mass Transfer,
54(21–22), pp. 4585–4595.

[CrossRef]
Trias,
F. X.
,
Gorobets,
A.
,
Oliva,
A.
, and
Pérez-Segarra,
C. D.
, 2013, “
DNS and Regularization Modeling of a Turbulent Differentially Heated Cavity of Aspect Ratio 5,” Int. J. Heat Mass Transfer,
57(1), pp. 171–182.

[CrossRef]
Ghia,
U.
,
Ghia,
K. N.
, and
Shin,
C. T.
, 1982, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method,” J. Comput. Phys.,
48(3), pp. 387–411.

[CrossRef]
Erturk,
E.
, and
Gökçöl,
C.
, 2006, “
Fourth-Order Compact Formulation of Navier–Stokes Equations and Driven Cavity Flow at High Reynolds Numbers,” Int. J. Numer. Methods Fluids,
50(4), pp. 421–436.

[CrossRef]
Lin,
L.-S.
,
Chen,
Y.-C.
, and
Lin,
C.-A.
, 2011, “
Multi Relaxation Time Lattice Boltzmann Simulations of Deep Lid Driven Cavity Flows at Different Aspect Ratios,” Comput. Fluids,
45(1), pp. 233–240.

[CrossRef]
Iwatsu,
R.
, and
Hyun,
J. M.
, 1995, “
Three-Dimensional Driven-Cavity Flows With a Vertical Temperature Gradient,” Int. J. Heat Mass Transfer,
38(18), pp. 3319–3328.

[CrossRef]
Dos Santos,
E. D.
,
Petry,
A. P.
,
Rocha,
L. A. O.
, and
França,
F. H. R.
, 2013, “
Numerical Study of Forced Convection Lid-driven Cavity Flows Using Large Eddy Simulation (LES),” J. Energy Power Eng.,
7, pp. 1669–1680.

Ismael,
M. A.
,
Pop,
I.
, and
Chamkha,
A. J.
, 2014, “
Mixed Convection in a Lid-Driven Square Cavity With Partial Slip,” Int. J. Therm. Sci.,
82, pp. 47–61.

[CrossRef]
Peng,
S.-H.
, and
Davidson,
L.
, 2001, “
Large Eddy Simulation for Turbulent Buoyant Flow in a Confined Cavity,” Int. J. Heat Fluid Flow,
22(3), pp. 323–331.

[CrossRef]
Goodarzi,
M.
,
Safaei,
M. R.
,
Karimipour,
A.
,
Hooman,
K.
,
Dahari,
M.
,
Kazi,
S. N.
, and
Sadeghinezhad,
E.
, 2014, “
Comparison of the Finite Volume and Lattice Boltzmann Methods for Solving Natural Convection Heat Transfer Problems Inside Cavities and Enclosures,” Abstr. Appl. Anal.,
2014, pp. 1–15.

Ibrahim,
A.
, and
Lemonnier,
D.
, 2009, “
Numerical Study of Coupled Double-Diffusive Natural Convection and Radiation in a Square Cavity Filled With a N

_{2}–CO

_{2} Mixture,” Int. Commun. Heat Mass Transfer,
36(3), pp. 197–202.

[CrossRef]
Mendu,
S. S.
, and
Das,
P. K.
, 2013, “
Fluid Flow in a Cavity Driven by an Oscillating Lid—A Simulation by Lattice Boltzmann Method,” Eur. J. Mech. B,
39, pp. 59–70.

[CrossRef]
Dos Santos,
E. D.
,
Isoldi,
L. A.
,
Petry,
A. P.
, and
França,
F. H. R.
, 2013, “
Numerical Investigation of Turbulent Internal Flow With Combined Convective and Radiative Heat Transfer in a Participant Medium,” 22nd International Congress of Mechanical Engineering, Ribeirão Preto, pp. 941–951.

Cheng,
C.-H.
, and
Chen,
C.-L.
, 2005, “
Buoyancy-Induced Periodic Flow and Heat Transfer in Lid-Driven Cavities With Different Cross-Sectional Shapes,” Int. Commun. Heat Mass Transfer,
32(3–4), pp. 483–490.

[CrossRef]
Mercan,
H.
, and
Atalık,
K.
, 2009, “
Vortex Formation in Lid-Driven Arc-Shape Cavity Flows at High Reynolds Numbers,” Eur. J. Mech. B,
28(1), pp. 61–71.

[CrossRef]
Oztop,
H. F.
,
Zhao,
Z.
, and
Yu,
B.
, 2009, “
Fluid Flow Due to Combined Convection in Lid-Driven Enclosure Having a Circular Body,” Int. J. Heat Fluid Flow,
30(5), pp. 886–901.

[CrossRef]
Sun,
C.
,
Yu,
B.
,
Oztop,
H. F.
,
Wang,
Y.
, and
Wei,
J.
, 2011, “
Control of Mixed Convection in Lid-Driven Enclosures Using Conductive Triangular Fins,” Int. J. Heat Mass Transfer,
54(4), pp. 894–909.

[CrossRef]
Shi,
X.
, and
Khodadadi,
J. M.
, 2005, “
Periodic State of Fluid Flow and Heat Transfer in a Lid-Driven Cavity Due to an Oscillating Thin Fin,” Int. J. Heat Mass Transfer,
48(25–26), pp. 5323–5337.

[CrossRef]
Dos Santos,
E. D.
,
Isoldi,
L. A.
,
Souza,
J. A.
,
Goulart,
M. M.
,
Rodrigues,
M. K.
,
Seibt,
F. M.
, and
Rocha,
L. A. O.
, 2013, “
Constructal Design of a Rectangular Fin Intruded into Forced Convective Lid-Driven Cavity Flows,” Proceedings of Construction Law Conference, Nanjing, pp. 126–134.

Bejan,
A.
, 2000, Shape and Structure, From Engineering to Nature,
Cambridge University Press,
New York.

Bejan,
A.
, and
Lorente,
S.
, 2008, Design With Constructal Theory,
Wiley,
Hoboken, NJ.

Bejan,
A.
, and
Zane,
J. P.
, 2012, Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization, 1st ed.,
Doubleday,
New York.

Bejan,
A.
, and
Lorente,
S.
, 2011, “
The Constructal Law and the Evolution of Design in Nature,” Phys. Life Rev.,
8(3), pp. 209–240.

[CrossRef] [PubMed]
Reis,
A. H.
, and
Bejan,
A.
, 2006, “
Constructal Theory of Global Circulation and Climate,” Int. J. Heat Mass Transfer,
49(11–12), pp. 1857–1875.

[CrossRef]
Bejan,
A.
, and
Merkx,
G. W.
, 2007, Constructal Theory of Social Dynamics,
Springer,
New York.

Rocha,
L. A. O.
,
Lorente,
S.
, and
Bejan,
A.
, 2013, Constructal Law and the Unifying Principle of Design,
Springer,
New York.

Lorenzini,
G.
,
Biserni,
C.
,
Isoldi,
L. A.
,
dos Santos,
E. D.
, and
Rocha,
L. A. O.
, 2011, “
Constructal Design Applied to the Geometric Optimization of Y-shaped Cavities Embedded in a Conducting Medium,” ASME J. Electron. Packag.,
133(4), p. 041008.

[CrossRef]
Rocha,
L. A. O.
,
Lorenzini,
E.
, and
Biserni,
C.
, 2005, “
Geometric Optimization of Shapes on the Basis of Bejan's Constructal Theory,” Int. Commun. Heat Mass Transfer,
32(10), pp. 1281–1288.

[CrossRef]
Lorenzini,
G.
,
Biserni,
C.
,
Estrada,
E. D.
,
Isoldi,
L. A.
,
dos Santos,
E. D.
, and
Rocha,
L. A. O.
, 2014, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm,” ASME J. Heat Transfer,
136(7), p. 071702.

[CrossRef]
Xie,
Z.
,
Chen,
L.
, and
Sun,
F.
, 2010, “
Geometry Optimization of T-Shaped Cavities According to Constructal Theory,” Math. Comput. Model.,
52(9–10), pp. 1538–1546.

[CrossRef]
Kepes Rodrigues,
M.
,
da Silva Brum,
R.
,
Vaz,
J.
,
Oliveira Rocha,
L. A.
,
Domingues dos Santos,
E.
, and
Isoldi,
L. A.
, 2015, “
Numerical Investigation About the Improvement of the Thermal Potential of an Earth-Air Heat Exchanger (EAHE) Employing the Constructal Design Method,” Renewable Energy,
80, pp. 538–551.

[CrossRef]
dos Santos,
E. D.
,
Machado,
B. N.
,
Zanella,
M. M.
,
das Neves Gomes,
M.
,
Souza,
J. A.
,
Isoldi,
L. A.
, and
Rocha,
L. A. O.
, 2014, “
Numerical Study of the Effect of the Relative Depth on the Overtopping Wave Energy Converters According to Constructal Design,” Defect Diffus. Forum,
348, pp. 232–244.

[CrossRef]
Hajmohammadi,
M. R.
,
Lorenzini,
G.
,
Joneydi Shariatzadeh,
O.
, and
Biserni,
C.
, 2015, “
Evolution in the Design of V-Shaped Highly Conductive Pathways Embedded in a Heat-Generating Piece,” ASME J. Heat Transfer,
137(6), p. 061001.

[CrossRef]
Hajmohammadi,
M.
,
Moulod,
M.
,
Shariatzadeh,
O. J.
, and
Nourazar,
S.
, 2014, “
Essential Reformulations for Optimization of Highly Conductive Inserts Embedded Into a Rectangular Chip Exposed to a Uniform Heat Flux,” Proc. Inst. Mech. Eng. Part C,
228(13), pp. 2337–2346.

[CrossRef]
da,
S. D.
,
Estrada,
E.
,
Fagundes,
T. M.
,
Isoldi,
L. A.
,
dos Santos,
E. D.
,
Xie,
G.
, and
Rocha,
L. A. O.
, 2015, “
Constructal Design Associated to Genetic Algorithm of Asymmetric V-Shaped Pathways,” ASME J. Heat Transfer,
137(6), p. 061010.

[CrossRef]
Gonzales,
G. V.
,
da,
S. D.
,
Estrada,
E.
,
Emmendorfer,
L. R.
,
Isoldi,
L. A.
,
Xie,
G.
,
Rocha,
L. A. O.
, and
dos Santosa,
E. D.
, 2015, “
A Comparison of Simulated Annealing Schedules for constructal design of Complex Cavities Intruded Into Conductive Walls With Internal Heat Generation,” Energy,
93, pp. 372–382.

[CrossRef]
Ko,
T.
, and
Ting,
K.
, 2006, “
Optimal Reynolds Number for the Fully Developed Laminar Forced Convection in a Helical Coiled Tube,” Energy,
31(12), pp. 2142–2152.

[CrossRef]
Xie,
G.
,
Song,
Y.
,
Asadi,
M.
, and
Lorenzini,
G.
, 215, “
Optimization of Pin-Fins for a Heat Exchanger by Entropy Generation Minimization and Constructal Law,” ASME J. Heat Transfer,
137(6), p. 061901.

Lorenzini,
G.
, and
Moretti,
S.
, 2014, “
Bejan's Constructal Theory and Overall Performance Assessment: The Global Optimization for Heat Exchanging Finned Modules,” Therm. Sci.,
18(2), pp. 339–348.

[CrossRef]
Najafi,
H.
,
Najafi,
B.
, and
Hoseinpoori,
P.
, 2011, “
Energy and Cost Optimization of a Plate and Fin Heat Exchanger Using Genetic Algorithm,” Appl. Therm. Eng.,
31(10), pp. 1839–1847.

[CrossRef]
Versteeg,
H. K.
, and
Malalasekera,
W.
, 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method,
Pearson,
New York/London.

fluent, Documentation Manual—fluent 6.3.16, 2007.

Patankar,
S. V.
, 1980, Numerical Heat Transfer and Fluid Flow,
McGraw Hill,
New York.

Barakos,
G.
,
Mitsoulis,
E.
, and
Assimacopolous,
D.
, 1994, “
Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models With Wall Functions,” Int. J. Numer. Methods Fluids,
18(7), pp. 695–719.

[CrossRef]
Davis,
G. V.
, 1983, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution,” Int. J. Numer. Methods Fluids,
3(3), pp. 249–264.

[CrossRef]