0
Research Papers: Micro/Nanoscale Heat Transfer

Array Volume Fraction-Dependent Thermal Transport Properties of Vertically Aligned Carbon Nanotube Arrays

[+] Author and Article Information
Yang Zhao

Department of Precision Machinery
and Precision Instrumentation,
University of Science and Technology of China,
Hefei, Anhui 230026, China;
Department of Mechanical Engineering,
University of California,
Berkeley, CA 94720

Rong-Shiuan Chu

Applied Science and Technology
Graduate Group,
University of California,
Berkeley, CA 94720

Costas P. Grigoropoulos

Department of Mechanical Engineering,
University of California,
Berkeley, CA 94720;
Applied Science and Technology
Graduate Group,
University of California,
Berkeley, CA 94720

Oscar D. Dubon

Applied Science and Technology
Graduate Group,
University of California,
Berkeley, CA 94720;
Department of Materials Science
and Engineering,
University of California,
Berkeley, CA 94720;
Materials Sciences Division,
Lawrence Berkeley National Laboratory,
Berkeley, CA 94720

Arun Majumdar

Department of Mechanical Engineering,
University of California,
Berkeley, CA 94720;
Applied Science and Technology
Graduate Group,
University of California,
Berkeley, CA 94720;
Department of Materials Science
and Engineering,
University of California,
Berkeley, CA 94720;
Materials Sciences Division,
Lawrence Berkeley National Laboratory,
Berkeley, CA 94720

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 10, 2015; final manuscript received April 25, 2016; published online May 17, 2016. Editor: Portonovo S. Ayyaswamy.

J. Heat Transfer 138(9), 092401 (May 17, 2016) (7 pages) Paper No: HT-15-1650; doi: 10.1115/1.4033538 History: Received October 10, 2015; Revised April 25, 2016

Vertically aligned carbon nanotube (CNT) arrays are promising candidates for advanced thermal interface materials (TIMs) since they possess high mechanical compliance and high intrinsic thermal conductivity. However, the overall thermal performance of CNT arrays often falls short of expectations when used as TIMs, and the underlying reasons have yet to be fully understood. In this work, the volume fraction of CNT arrays is demonstrated to be the key factor in determining the CNT array thermal transport properties. By increasing the array volume fraction, both the CNT array effective thermal conductivity and the CNT array–glass thermal contact conductance were experimentally found to increase monotonically. One interesting phenomenon is that the increasing rate of thermal conductivity is larger than that of array volume fraction. Compressive experiments verified that the CNT arrays with lower volume fractions suffer from severe buckling, which results in a further decreasing trend. By understanding the underlying reasons behind this trend, the overall thermal performance of vertically aligned CNT arrays can be further increased.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Prasher, R. , 2006, “ Thermal Interface Materials: Historical Perspective, Status, and Future Direction,” Proc. IEEE, 94(8), pp. 1571–1586. [CrossRef]
Samson, E. C. , Machiroutu, S. V. , Chang, J. Y. , Santos, I. , Hermerding, J. , Dani, A. , Prasher, R. , and Song, D. , 2005, “ Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel Centrino Mobile Technology,” Intel Technol. J., 9(1), p. 75. [CrossRef]
Cao, A. , Dickrell, P. L. , Sawyer, W. G. , Ghasemi-Nejhad, M. N. , and Ajayan, P. M. , 2005, “ Super-Compressible Foamlike Carbon Nanotube Films,” Science, 310(5752), pp. 1307–1310. [CrossRef] [PubMed]
Suhr, J. , Victor, P. , Ci, L. , Sreekala, S. , Zhang, X. , Nalamasu, O. , and Ajayan, P. M. , 2007, “ Fatigue Resistance of Aligned Carbon Nanotube Arrays Under Cyclic Compression,” Nat. Nanotechnol., 2(7), pp. 417–421. [CrossRef] [PubMed]
Falvo, M. R. , Clary, G. J. , Taylor, R. M., II , Chi, V. , Brooks, F. P., Jr. , Washburn, S. , and Superfine, R. , 1997, “ Bending and Buckling of Carbon Nanotubes Under Large Strain,” Nature, 389(6651), pp. 582–584. [CrossRef] [PubMed]
Tong, T. , Zhao, Y. , Delzeit, L. , Kashani, A. , Meyyappan, M. , and Majumdar, A. , 2008, “ Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays,” Nano Lett., 8(2), pp. 511–515. [CrossRef] [PubMed]
Fujii, M. , Zhang, X. , Xie, H. , Ago, H. , Takahashi, K. , Ikuta, T. , Abe, H. , and Shimizu, T. , 2005, “ Measuring the Thermal Conductivity of a Single Carbon Nanotube,” Phys. Rev. Lett., 95(6), p. 065502. [CrossRef] [PubMed]
Pop, E. , Mann, D. , Wang, Q. , Goodson, K. , and Dai, H. , 2006, “ Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature,” Nano Lett., 6(1), pp. 96–100. [CrossRef] [PubMed]
Yu, C. , Shi, L. , Yao, Z. , Li, D. , and Majumdar, A. , 2005, “ Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube,” Nano Lett., 5(9), pp. 1842–1846. [CrossRef] [PubMed]
Kim, P. , Shi, L. , Majumdar, A. , and McEuen, P. L. , 2001, “ Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett., 87(21), p. 215502. [CrossRef] [PubMed]
Choi, S. U. S. , Zhang, Z. G. , Yu, W. , Lockwood, F. E. , and Grulke, E. A. , 2001, “ Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,” Appl. Phys. Lett., 79(14), pp. 2252–2254. [CrossRef]
Biercuk, M. J. , Llaguno, M. C. , Radosavljevic, M. , Hyun, J. K. , Johnson, A. T. , and Fischer, J. E. , 2002, “ Carbon Nanotube Composites for Thermal Management,” Appl. Phys. Lett., 80(15), pp. 2767–2769. [CrossRef]
Guthy, C. , Du, F. , Brand, S. , Winey, K. I. , and Fischer, J. E. , 2007, “ Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites,” ASME J. Heat Transfer, 129(8), pp. 1096–1099. [CrossRef]
Bonnet, P. , Sireude, D. , Garnier, B. , and Chauvet, O. , 2007, “ Thermal Properties and Percolation in Carbon Nanotube-Polymer Composites,” Appl. Phys. Lett., 91(20), p. 201910. [CrossRef]
Gojny, F. H. , Wichmann, M. H. G. , Fiedler, B. , Kinloch, I. A. , Bauhofer, W. , Windle, A. H. , and Schulte, K. , 2006, “ Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites,” Polymer, 47(6), pp. 2036–2045. [CrossRef]
Prasher, R. S. , Hu, X. J. , Chalopin, Y. , Mingo, N. , Lofgreen, K. , Volz, S. , Cleri, F. , and Keblinski, P. , 2009, “ Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators,” Phys. Rev. Lett., 102(10), p. 105901. [CrossRef] [PubMed]
Huxtable, S. T. , Cahill, D. G. , Shenogin, S. , Xue, L. , Ozisik, R. , Barone, P. , Usrey, M. , Strano, M. S. , Siddons, G. , Shim, M. , and Keblinski, P. , 2003, “ Interfacial Heat Flow in Carbon Nanotube Suspensions,” Nat. Mater., 2(11), pp. 731–734. [CrossRef] [PubMed]
Marconnet, A. M. , Yamamoto, N. , Panzer, M. A. , Wardle, B. L. , and Goodson, K. E. , 2011, “ Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites With High Packing Density,” ACS Nano, 5(6), pp. 4818–4825. [CrossRef] [PubMed]
Tong, T. , Zhao, Y. , Delzeit, L. , Kashani, A. , Meyyappan, M. , and Majumdar, A. , 2007, “ Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials,” IEEE Trans. Compon. Packag. Technol., 30(1), pp. 92–100. [CrossRef]
Cola, B. A. , Xu, J. , Cheng, C. , Xu, X. , Fisher, T. S. , and Hu, H. , 2007, “ Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces,” J. Appl. Phys., 101(5), p. 054313. [CrossRef]
Panzer, M. A. , Zhang, G. , Mann, D. , Hu, X. , Pop, E. , Dai, H. , and Goodson, K. E. , 2008, “ Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays,” ASME J. Heat Transfer, 130(5), p. 052401. [CrossRef]
Hone, J. , Llaguno, M. C. , Nemes, N. M. , Johnson, A. T. , Fischer, J. E. , Walters, D. A. , Casavant, M. J. , Schmidt, J. , and Smalley, R. E. , 2000, “ Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,” Appl. Phys. Lett., 77(5), pp. 666–668. [CrossRef]
Yang, D. J. , Zhang, Q. , Chen, G. , Yoon, S. F. , Ahn, J. , Wang, S. G. , Zhou, Q. , Wang, Q. , and Li, J. Q. , 2002, “ Thermal Conductivity of Multiwalled Carbon Nanotubes,” Phys. Rev. B, 66(16), p. 165440. [CrossRef]
Hata, K. , Futaba, D. N. , Mizuno, K. , Namai, T. , Yumura, M. , and Iijima, S. , 2004, “ Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes,” Science, 306(5700), pp. 1362–1364. [CrossRef] [PubMed]
Futaba, D. N. , Hata, K. , Namai, T. , Yamada, T. , Mizuno, K. , Hayamizu, Y. , Yumura, M. , and Iijima, S. , 2006, “ 84% Catalyst Activity of Water-Assisted Growth of Single Walled Carbon Nanotube Forest Characterization by a Statistical and Macroscopic Approach,” J. Phys. Chem. B, 110(15), pp. 8035–8038. [CrossRef] [PubMed]
Amama, P. B. , Pint, C. L. , McJilton, L. , Kim, S. M. , Stach, E. A. , Murray, P. T. , Hauge, R. H. , and Maruyama, B. , 2009, “ Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets,” Nano Lett., 9(1), pp. 44–49. [CrossRef] [PubMed]
Nessim, G. D. , Hart, A. J. , Kim, J. S. , Acquaviva, D. , Oh, J. , Morgan, C. D. , Seita, M. , Leib, J. S. , and Thompson, C. V. , 2008, “ Tuning of Vertically-Aligned Carbon Nanotube Diameter and Areal Density Through Catalyst Pre-Treatment,” Nano Lett., 8(11), pp. 3587–3593. [CrossRef] [PubMed]
Lu, Q. , Keskar, G. , Ciocan, R. , Rao, R. , Mathur, R. B. , Rao, A. M. , and Larcom, L. L. , 2006, “ Determination of Carbon Nanotube Density by Gradient Sedimentation,” J. Phys. Chem. B, 110(48), pp. 24371–24376. [CrossRef] [PubMed]
Cahill, D. G. , 2004, “ Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance,” Rev. Sci. Instrum., 75(12), pp. 5119–5122. [CrossRef]
Ohsone, Y. , Wu, G. , Dryden, J. , Zok, F. , and Majumdar, A. , 1999, “ Optical Measurement of Thermal Contact Conductance Between Wafer-Like Thin Solid Samples,” ASME J. Heat Transfer, 121(4), pp. 954–963. [CrossRef]
Chang, C. W. , Okawa, D. , Garcia, H. , Majumdar, A. , and Zettl, A. , 2007, “ Nanotube Phonon Waveguide,” Phys. Rev. Lett., 99(4), p. 045901. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

SEM images of the catalyst nanoparticles exposed by removing the CNT array (top) and TEM images of the CNTs (bottom). Before CNT array growth, the catalysts were annealed in H2: 80 sccm for (a) 7 min, (b) 2 min, and (c) 0 min. The number of catalyst particles increased as the annealing duration decreased.

Grahic Jump Location
Fig. 2

With H2 flow rate of 110 sccm, effect on the nanoparticle formation and CNT growth of different underlayers: (a) sputtered Al2O3 and (b) ALD Al2O3

Grahic Jump Location
Fig. 3

Experimental setup of the phase-sensitive thermal reflectance thermometry

Grahic Jump Location
Fig. 4

Schematic of the glass/In/CNT array three-layer structure

Grahic Jump Location
Fig. 5

GGlass–CNT array and kCNT array versus volume fraction (%) of CNT arrays. Both GGlass–CNT array and kCNT array increase monotonically as the volume fraction increases.

Grahic Jump Location
Fig. 6

Side views SEM images of the CNT array with (a) 1.84% and (b) 0.87% in volume fraction before compression. Both the CNT arrays are ∼130 μm in length. After compression, the CNT array with initially (c) 1.84% in volume fraction decreases 30 μm in length while the CNT array with initially (d) 0.87% in volume fraction decreases 100 μm in length. The scale bar in images (a)–(d) is 40 μm.

Grahic Jump Location
Fig. 7

(a) In ideal case, vertically aligned CNT array can bridge two surfaces and each tube independently forms a thermal path and (b) when CNTs buckle under bonding pressure, some tubes are overshadowed by adjacent tubes and form thermal paths through tube-to-tube contact

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In