0
Research Papers: Jets, Wakes, and Impingment Cooling

Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle

[+] Author and Article Information
Weihong Li

Department of Thermal Engineering,
Gas Turbine Institute,
Tsinghua University,
Beijing 100086, China
e-mail: Liwh13@mails.tsinghua.edu.cn

Minghe Xu

Department of Thermal Engineering,
Tsinghua University,
Beijing 100086, China
e-mail: xumh13@mails.tsinghua.edu.cn

Jing Ren

Mem. ASME
Department of Thermal Engineering,
Gas Turbine Institute,
Tsinghua University,
Beijing 100086, China
e-mail: Renj@tsinghua.edu.cn

Hongde Jiang

Department of Thermal Engineering,
Gas Turbine Institute,
Tsinghua University,
Beijing 100086, China
e-mail: Jianghd@tsinghua.edu.cn

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received February 18, 2016; final manuscript received July 6, 2016; published online September 27, 2016. Assoc. Editor: Amy Fleischer.

J. Heat Transfer 139(1), 012201 (Sep 27, 2016) (12 pages) Paper No: HT-16-1091; doi: 10.1115/1.4034165 History: Received February 18, 2016; Revised July 06, 2016

Comprehensive impingement heat transfer coefficients data are presented with varied Reynolds number, hole spacing, jet-to-target distance, and hole inclination utilizing transient liquid crystal. The impingement configurations include: streamwise and spanwise jet-to-jet spacing (X/D, Y/D) are 4∼8 and jet-to-target plate distance (Z/D) is 0.75∼3, which composed a test matrix of 36 different geometries. The Reynolds numbers vary between 5,000 and 25,000. Additionally, hole inclination pointing to the upstream direction (θ: 0 deg∼40 deg) is also investigated to compare with normal impingement jets. Local and averaged heat transfer coefficients data are presented to illustrate that (1) surface Nusselt numbers increase with streamwise development for low impingement distance, while decrease for large impingement distance. The increase or decrease variations are also influenced by Reynolds number, streamwise and spanwise spacings. (2) Nusselt numbers of impingement jets with inclined angle are similar to those of normal impingement jets. Due to the increase or decrease variations corresponding to small or large impingement distance, a two-regime-based correlation, based on that of Florschuetz et al., is developed to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D∼0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ligrani, P. , 2013, “ Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines,” Int. J. Rotating Mach., 2013(3), pp. 1–32. [CrossRef]
Bunker, R. S. , Bailey, J. C. , Lee, C.-P. , and Stevens, C. W. , 2004, “ In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils,” ASME Paper No. GT2004-54260.
Chyu, M. K. , and Alvin, M. A. , 2010, “ Turbine Airfoil Aerothermal Characteristics in Future Coal–Gas-Based Power Generation Systems,” Heat Transfer Res., 41(7), pp. 737–752. [CrossRef]
Chambers, A. C. , Gillespie, D. R. H. , Ireland, P. T. , and Dailey, G. M. , 2005, “ The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel,” ASME J. Heat Transfer, 127(4), pp. 358–365. [CrossRef]
Weigand, B. , and Spring, S. , 2011, “ Multiple Jet Impingement—A Review,” Heat Transfer Res., 42(2), pp. 101–142. [CrossRef]
Xing, Y. , Spring, S. , and Weigand, B. , 2011, “ Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes,” Int. J. Therm. Sci., 50(7), pp. 1293–1307. [CrossRef]
Liang, G. , 2009, “ Turbine Airfoil With Multiple Near Wall Compartment Cooling,” U.S. Patent No. 7,556,476 B1.
Gillespie, D. R. H. , Wang, Z. , Ireland, P. T. , and Kohler, S. T. , 1998, “ Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry,” ASME J. Turbomach., 120(1), pp. 92–99. [CrossRef]
Terzis, A. , Wagner, G. , von Wolfersdorf, J. , Ott, P. , and Weigand, B. , 2014, “ Effect of Hole Staggering on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique,” ASME J. Heat Transfer, 136(7), p. 071701. [CrossRef]
Terzis, A. , Ott, P. , von Wolfersdorf, J. , Weigand, B. , and Cochet, M. , 2014, “ Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils,” ASME J. Turbomach., 136(9), p. 091011. [CrossRef]
Terzis, A. , Ott, P. , Cochet, M. , von Wolfersdorf, J. , and Weigand, B. , 2015, “ Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels,” ASME J. Turbomach., 137(2), p. 021004. [CrossRef]
Kercher, D. M. , and Tabakoff, W. , 1970, “ Heat Transfer By a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air,” ASME J. Eng. Power, 92(1), pp. 73–82. [CrossRef]
Chance, J. L. , 1974, “ Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets,” Tappi J., 57(6), pp. 108–112.
Metzger, D. E. , Florschuetz, L. W. , Takeuchi, D. I. , Behee, R. D. , and Berry, R. A. , 1979, “ Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air,” ASME Trans. J. Heat Transfer, 101(3), pp. 526–531. [CrossRef]
Florschuetz, L. W. , Truman, C. R. , and Metzger, D. E. , 1981, “ Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow,” ASME Trans. J. Heat Transfer, 103(2), pp. 337–342. [CrossRef]
Bailey, J. C. , and Bunker, R. S. , 2002, “ Local Heat Transfer and Flow Distributions For Impinging Jet Arrays of Dense and Sparse Extent,” ASME Paper No. GT2002-30473.
Goodro, M. , Ligrani, P. M. , Fox, M. , and Moon, H. K. , 2010, “ Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets,” J. Thermophys. Heat Transfer, 24(1), pp. 133–144. [CrossRef]
Goodro, M. , Park, J. , Ligrani, P. , Fox, M. , and Moon, H. K. , 2008, “ Effects of Hole Spacing on Spatially Resolved Jet Array Impingement Heat Transfer,” Int. J. Heat Mass Transfer, 51(25–26), pp. 6243–6253. [CrossRef]
Goodro, M. , Park, J. , Ligrani, P. M. , Fox, M. , and Moon, H. K. , 2009, “ Effect of Temperature Ratio on Jet Array Impingement Heat Transfer,” ASME J. Heat Transfer, 131(1), p. 012201. [CrossRef]
Goodro, M. , Park, J. , Ligrani, P. M. , Fox, M. , and Moon, H. K. , 2010, “ Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets,” AIAA J. Thermophys. Heat Transfer, 24(1), pp. 133–144. [CrossRef]
Lee, J. , Ren, Z. , Ligrani, P. M. , Lee, D. H. , Fox, M. D. , and Moon, H.-K. , 2014, “ Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-To-Target Plate Distance and Hole Spacing,” Int. J. Heat Mass Transfer, 75, pp. 534–544. [CrossRef]
Lee, J. , Ren, Z. , Ligrani, P. M. , Fox, M. D. , and Moon, H.-K. , 2015, “ Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects,” Int. J. Therm. Sci., 88, pp. 7–18. [CrossRef]
Yan, X. , and Saniei, N. , 1997, “ Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate,” Int. J. Heat Fluid Flow, 18(6), pp. 591–599. [CrossRef]
Tong, A. Y. , 2003, “ On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet,” Int. J. Heat Mass Transfer, 46(11), pp. 2077–2085. [CrossRef]
Schulz, S. , Schueren, S. , and Von Wolfersdorf, J. , 2014, “ A Particle Image Velocimetry-Based Investigation of the Flow Field in an Oblique Jet Impingement Configuration,” ASME J. Turbomach., 136(5), p. 051009. [CrossRef]
Schueren, S. , Hoefler, F. , von Wolfersdorf, J. , and Naik, S. , 2013, “ Heat Transfer in an Oblique Jet Impingement Configuration With Varying Jet Geometries,” ASME J. Turbomach., 135(2), p. 021010. [CrossRef]
El-Gabry, L. A. , and Kaminski, D. A. , 2005, “ Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets,” ASME J. Turbomach., 127(3), pp. 532–544. [CrossRef]
Xing, Y. , Spring, S. , and Weigand, B. , 2010, “ Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets,” ASME J. Heat Transfer, 132(9), p. 092201. [CrossRef]
Hay, J. L. , and Hollingsworth, D. K. , 1996, “ A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals,” J. Exp. Therm. Fluid Sci., 12(1), pp. 1–12. [CrossRef]
Hay, J. L. , and Hollingsworth, D. K. , 1998, “ Calibration of Micro-Encapsulated Liquid Crystals Using Hue Angle and a Dimensionless Temperature,” Exp. Therm. Fluid Sci, 18(3), pp. 251–257. [CrossRef]
Incropera, F. P. , Dewitt, D. P. , Bergman, T. L. , and Lavine, A. S. , 2006, Fundamentals of Heat and Mass Transfer, Wiley, Hoboken, NJ.
Terzis, A. , von Wolfersdorf, J. , Weigand, B. , and Ott, P. , 2012, “ Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique,” Meas. Sci. Technol., 23(11), p. 115303. [CrossRef]
Moffat, R. J. , 1998, “ Describing the Uncertainties in Experimental Results,” Exp. Thermal Fluid Sci., 1(1), pp. 3–17. [CrossRef]
Yan, Y. , and Owen, J. M. , 2002, “ Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal,” Int. J. Heat Fluid Flow, 23(1), pp. 29–35. [CrossRef]
Chi, Z. , Kan, R. , Ren, J. , and Jiang, H. , 2013, “ Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure,” Int. J. Heat Mass Transfer, 64, pp. 567–580. [CrossRef]
Kays, W. M. , Crawford, M. E. , and Weigand, B. , 2005, Convective Heat and Mass Transfer, McGraw-Hill, New York.
Terzis, A. , von Wolfersdorf, J. , Weigand, B. , and Ott, P. , 2015, “ A Method To Visualise Near Wall Fluid Flow Patterns Using Locally Resolved Heat Transfer Experiments,” Exp. Therm. Fluid Sci., 60, pp. 223–230. [CrossRef]
Katti, V. , and Prabhu, S. V. , 2009, “ Influence of Streamwise Pitch on the Local Heat Transfer Characteristics for In-Line Arrays of Circular Jets With Crossflow of Spent Air in One Direction,” Heat Mass Transfer, 45(9), pp. 1167–1184. [CrossRef]
Arik, M. , and Bunker, R. S. , 2006, “ Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling,” ASME J. Electron. Packag., 128(3), pp. 215–225. [CrossRef]
Son, C. M. , Gillespie, D. R. H. , Ireland, P. T. , and Dailey, G. M. , 2001, “ Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System,” ASME J. Turbomach., 123(1), pp. 154–160. [CrossRef]
O'Donovan, T. S. , and Murray, D. B. , 2007, “ Jet Impingement Heat Transfer–Part II: A Temporal Investigation of Heat Transfer and Local Fluid Velocities,” Int. J. Heat Mass Transfer, 50(17), pp. 3302–3314. [CrossRef]
Gao, L. , 2003, Effect of Jet Hole Arrays Arrangement on Impingement Heat Transfer, M.S. Thesis, Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA.
Yang, L. , Ren, J. , Jiang, H. , and Ligrani, P. M. , 2014, “ Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage,” Int. J. Heat Mass Transfer, 71, pp. 57–68. [CrossRef]
Chauhan, R. , and Thakur, N. S. , 2013, “ Heat Transfer and Friction Factor Correlations for Impingement Jet Solar Air Heater,” Exp. Therm. Fluid Sci., 44, pp. 760–767. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

Schematic representative of test models

Grahic Jump Location
Fig. 1

Impingement cooling test facility

Grahic Jump Location
Fig. 3

Correction of plenum temperature, Re = 20,000

Grahic Jump Location
Fig. 7

Local exponent m distribution for the jet pattern: px = 4, py = 6, and pz = 2

Grahic Jump Location
Fig. 4

Comparison of (a) spanwise-average and (b) area-average Nusselt number with literature data

Grahic Jump Location
Fig. 5

Discharge coefficient (Cd) and crossflow development Gcf/Gj for various channel areas with impingement. (a) Discharge coefficient (Cd), and (b) crossflow development Gcf/Gj.

Grahic Jump Location
Fig. 6

Local Nusselt number distribution for different Re values. px = 4, py = 6 and pz = 2. (a) Re = 5000, (b) Re = 10,000, (c) Re = 20,000, and (d) Re = 25,000.

Grahic Jump Location
Fig. 8

Local Nusselt number distribution for different px values. py = 4, pz = 0.75, and Re = 10,000. (a) px = 4, (b) px = 6, and (c) px = 8.

Grahic Jump Location
Fig. 9

Centerline Nusselt number variations (y/D = 0) for pz = 0.75 for different Re and px values. (a) py = 4, (b) py = 6, and (c) py = 8.

Grahic Jump Location
Fig. 10

Local Nusselt number distribution for different pz values. px = 4, py = 6 and Re = 10,000. (a) pz = 0.75, (b) pz = 1.2, (c) pz = 2, and (d) pz = 3.

Grahic Jump Location
Fig. 11

Local Nusselt number distribution for different θ values. px = 8, py = 8, pz = 0.75, and Re = 10,000. (a) θ = 0 deg, (b) θ = 20 deg, and (c) θ = 40 deg.

Grahic Jump Location
Fig. 12

Spanwise-averaged Nusselt number distributions for pz = 1.2 with different px and Re values. (a) py = 4 and (b) py = 8.

Grahic Jump Location
Fig. 13

Spanwise-averaged Nusselt number distributions for px = py = 4 with different pz and Re values. (a) Re = 5000 and (b) Re = 10,000.

Grahic Jump Location
Fig. 14

Spanwise-averaged Nusselt number distributions for pz = 0.75 with different py and Re values. (a) px = 4 and (b) px = 8.

Grahic Jump Location
Fig. 15

Spanwise-averaged Nusselt number distributions for px = py = 8 with different θ and Re values. (a) pz = 0.75 and (b) pz = 2.

Grahic Jump Location
Fig. 16

Comparison of experimental area-averaged Nusselt number with correlations prediction results. (a) With Florschuetz et al. correlation and (b) with new correlation.

Grahic Jump Location
Fig. 17

Spatially averaged Nusselt number distributions as dependent upon hole spacing, pz values, and Re values. (a) row-averaged Nu¯ upon Re and pz values, px = py = 6, (b) row-averaged Nu¯ upon px and pz values, py = 6, Re = 10,000, (c) row-averaged Nu¯ upon py and pz values, px = 4, Re = 5000, and (d) area-averaged Nu¯¯ upon hole spacing, pz, and Re values.

Grahic Jump Location
Fig. 18

Comparison of all present row-averaged heat transfer results with Florschuetz et al. [15] and new correlation. (a) With Florschuetz et al. correlation and (b) with new correlation.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In