0
Research Papers: Jets, Wakes, and Impingment Cooling

Influence of Coolant Jet Pulsation on the Convective Film Cooling of an Adiabatic Wall

[+] Author and Article Information
Qaiser Sultan

Département Fluides, Thermique et Combustion,
Institut P'—CNRS—ISAE-ENSMA—Université
de Poitiers,
Axe Cost Téléport 2-1, Av Clément
Ader—BP 40109,
86961 Futuroscope Chasseneuil Cedex, France
e-mail: qaiser.sultan@gmail.com

Gildas Lalizel

Département Fluides, Thermique et Combustion,
Institut P'—CNRS—ISAE-ENSMA—Université
de Poitiers,
Axe Cost Téléport 2-1, Av Clément
Ader—BP 40109,
86961 Futuroscope Chasseneuil Cedex, France
e-mail: gildas.lalizel@isae-ensma.fr

Matthieu Fénot

Département Fluides, Thermique et Combustion,
Institut P'—CNRS—ISAE-ENSMA—Université
de Poitiers,
Axe Cost Téléport 2-1, Av Clément
Ader—BP 40109,
86961 Futuroscope Chasseneuil Cedex, France
e-mail: matthieu.fénot@isae-ensma.fr

Eva Dorignac

Département Fluides, Thermique et Combustion,
Institut P'—CNRS—ISAE-ENSMA—Université
de Poitiers,
Axe Cost Téléport 2-1, Av Clément
Ader—BP 40109,
86961 Futuroscope Chasseneuil Cedex, France
e-mail: eva.dorignac@isae-ensma.fr

1Corresponding author.

2Present address: House # F-2, Alfalah Housing Society, Malir Halt, Karachi 75210, Pakistan.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 22, 2016; final manuscript received August 31, 2016; published online October 26, 2016. Assoc. Editor: Zhixiong Guo.

J. Heat Transfer 139(2), 022201 (Oct 26, 2016) (12 pages) Paper No: HT-16-1223; doi: 10.1115/1.4034773 History: Received April 22, 2016; Revised August 31, 2016

This study investigates the effects of sinusoidal pulsations externally imposed to an oblique round jet. The effectiveness of film coverage of an adiabatic wall onset for a thermally uniform bulk flow is presented in the perspective of gas turbine film cooling. For the injectant fluid, both the temperature and the mass flow rate are controlled prior to entrance to the periodic forcing system using a loudspeaker drive. The characteristic film cooling parameters including the blowing ratios and the temperature ratio are maintained at M=ρiUi/ρU= 0.65, 1, and 1.25, and Ti/T=2 respectively. The injection fluid is pulsated to a nondimensionalized frequency of St=fd/U= 0, 0.2, 0.3, and 0.5. In the present investigation, the impact of injectant film modulation is figured out by analyzing the velocity fields measured by a system of time-resolved particle image velocimetry (TR-PIV), as well as analyzing the adiabatic wall temperature and the convective heat transfer coefficient measured by a system of infrared thermography. The overall film-cooling effectiveness is revealed by the time-averaged analysis, in which altered time-averaged jet trajectories and wake behavior are focused. It is observed that the pulsations tend to result in lower effectiveness when the flow remained attached to the wall in steady blowing case. In steady blowing cases with jet liftoff, such as for M= 1.25, rendering low-frequency pulsation helps in increasing film-cooling effectiveness due to the discharge of lower mass flow rate coolant during the significant time interval of the respective pulse cycle.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Abhari, R. S. , 1996, “ Impact of Rotor–Stator Interaction on Turbine Blade Film Cooling,” ASME J. Turbomach., 118(1), pp. 123–133. [CrossRef]
Bons, J. P. , Rivir, J. B. , Mac Arthur, C. D. , and Pestian, D. J. , 1995, “ The Effect of Unsteadiness on Film Cooling Effectiveness,” Wright Laboratory, Report No. WL-TR-96-2096.
Ligrani, P. M. , Gong, R. , and Cuthrell, J. M. , 1996a, “ Bulk Flow Pulsations and Film Cooling-I: Injectant Behavior,” Int. J. Heat Mass Transfer, 39(11), pp. 2271–2282. [CrossRef]
Ligrani, P. M. , Gong, R. , and Cuthrell, J. M. , 1996b, “ Bulk Flow Pulsations and Film Cooling-II: Flow Structure and Film Effectiveness,” Int. J. Heat Mass Transfer, 39(11), pp. 2283–2292. [CrossRef]
Ligrani, P. M. , Gong, R. , Cuthrell, J. M. , and Lee, J. S. , 1997, “ Effect of Bulk Flow Pulsations on Film Cooled Boundary Layer Structure,” ASME J. Fluid Eng., 119(1), pp. 56–66. [CrossRef]
Sohn, D. K. , and Lee, J. S. , 1997, “ The Effect of Bulk Flow Pulsations on Film Cooling From Two Rows of Holes,” ASME Paper No. 97-GT-129.
Seo, H. J. , Lee, J. S. , and Ligrani, P. M. , 1998, “ The Effect of Injection Hole Length on Film Cooling With Bulk Flow Pulsations,” Int. J. Heat Mass Transfer, 41(22), pp. 3515–3528. [CrossRef]
Lee, J. S. , and Jung, I. S. , 2002, “ Effect of Bulk Flow Pulsations on Film Cooling With Compound Angle Holes,” Int. J. Heat Mass Transfer, 45(1), pp. 113–123. [CrossRef]
Coulthard, S. M. , Volino, R. J. , and Flack, K. A. , 2007a, “ Effect of Jet Pulsing on Film Cooling-Part 1: Effectiveness and Flow-Field Temperature Results,” ASME J. Turbomach., 129(2), pp. 232–246. [CrossRef]
Ekkad, S. V. , Ou, S. , and Rivir, R. B. , 2006, “ Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model,” ASME J. Turbomach., 128(3), pp. 564–571. [CrossRef]
Ou, S. , and Rivir, R. B. , “ Shaped-Hole Film Cooling With Pulsed Secondary Flow,” ASME Paper No. GT2006-90272.
Sultan, Q. , Lalizel, G. , Fénot, M. , and Dorignac, E. , 2011, “ Experimental Time-Resolved Study of the Interaction Between a Pulsating Injectant and a Steady Cross-Flow: Aerodynamics of Film Cooling,” Exp. Fluids, 51(5), pp. 1245–1259. [CrossRef]
Lalizel, G. , Sultan, Q. , Fénot, M. , and Dorignac, E. , 2012, “ Experimental Convective Heat Transfer Characterization of Pulsating Jet in Cross Flow: Influence of Strouhal Number Excitation on Film Cooling Effectiveness,” 6th European Thermal Sciences Conference, Eurotherm 2012, Poitiers, France.
Muldoon, F. , and Acharya, S. , 2009, “ DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness,” Int. J. Heat Mass Transfer, 52, pp. 3118–3127. [CrossRef]
Kartuzova, O. , Danila, D. , and Ibrahim, M. , 2009, “ Computational Simulation of Cylindrical Film Hole With Jet Pulsation on Flat Plates,” J. Propul. Power, 25(6), pp. 1249–1258. [CrossRef]
Rutledge, J. L. , King, P. I. , and Rivir, R. , 2009, “ CFD Prediction of the Frequency Dependence of Pulsed Film Cooling Heat Flux on a Turbine Blade Leading Edge,” AIAA Paper No. 2009-0680.
Sultan, Q. , Lalizel, G. , and Dorignac, E. , 2009, “ Qualification of Wind Tunnel Flow Field Characteristics Prior to Advanced Film Cooling Experimentation,” Conference on Modeling Fluid Flow (CMFF’09), Budapest, Hungary, Sept. 9–12.
Sultan, Q. , 2011, “ Caractérisation Expérimentale Aérothermique d'un jet Pulsé Débouchant dans un Écoulement Transversal: Influence du Nombre de Strouhal d'excitation sur le refroidissement de paroi par Film,” Mémoire de diplôme d'thèse, École Nationale Supérieure de Mécanique et d'Aérotechnique (ENSMA), Poitiers, France.
Fric, T. F. , and Roshko, A. , 1994, “ Vortical Structure in the Wake of a Transverse Jet,” J. Fluid Mech., 279, pp. 1–47. [CrossRef]
Moussa, Z. M. , Trischka, J. W. , and Eskinazi, S. , 1977, “ The Near Field in the Mixing of a Round Jet With a Cross-Stream,” J. Fluid Mech., 80(01), pp. 49–80. [CrossRef]
Andreopoulos, J. , 1984, “ On the Structure of Jets in a Crossflow,” J. Fluid Mech., 157, pp. 163–197. [CrossRef]
Mick, W. J. , and Mayle, R. E. , 1988, “ Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern,” ASME J. Turbomach., 110(1), pp. 66–72. [CrossRef]
Ligrani, P. M. , Ciriello, S. , and Bishop, D. T. , 1992, “ Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film Cooling Holes,” ASME J. Turbomach., 114(4), pp. 687–700. [CrossRef]
Ligrani, P. M. , Wigle, J. M. , Ciriello, S. , and Jackson, S. M. , 1994, “ Film-Cooling From Holes With Compound Angle Orientation: Part 1–Results Downstream of Two Staggered Rows of Holes With 3D Spanwise Spacing,” ASME J. Turbomach., 116(2), pp. 341–352.
Saumweber, C. , and Schulz, A. , 2004, “ Interaction of Film Cooling Rows: Effects of Hole Geometery and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes,” ASME J. Turbomach., 126(2), pp. 237–246. [CrossRef]
Vedula, R. J. , and Metzger, D. E. , 1991, “ A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distribution in Three-Temperature Convection Situation,” ASME Paper No. 91-GT-345.
Ekkad, S. V. , Ou, S. , and Rivir, R. B. , 2004, “ A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test,” ASME J. Turbomach., 126(4), pp. 597–603. [CrossRef]
Teekaram, A. J. H. , Forth, C. J. P. , and Jones, T. V. , 1989, “ The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling,” ASME J. Turbomach., 111(1), pp. 57–62. [CrossRef]
Dorignac, E. , and Vullierme, J. J. , “ Etude Expérimentale des Coefficients d’échange d'un film de Refroidissement sur plaque Non-Athermane: Effet de la géométrie d'injection,” Int. J. Heat Mass Transfer, 39(9), pp. 1935–1951. [CrossRef]
Messaadi, A. , 1992, “ Etude des échanges Convectifs le long d'une paroi à Multiperforation Incline. Application au refroidissement des parois des chambres de Combustion,” Thèse du Doctorat de l'Université de Poitiers, Poitiers, France.
Petre, B. , Dorignac, E. , and Vullierme, J. J. , 2003, “ Study of the Influence of the Number of Holes Rows on the Convective Heat Transfer in the Case of Full Coverage Film Cooling,” Int. J. Heat Mass Transfer, 46(18), pp. 3477–3496. [CrossRef]
Fenot, M. , 2004, “ Etude du Refroidissement par impact de jets application aux aubes de turbines,” Thèse du Doctorat de l'Université de Poitiers, Poitiers, France.
Dung, H. T. K. , 2009, “ Étude du Refroidissement d'une paroi Concave par l'impact d'un jet Bidimensionnel,” Thèse du Doctorat de l'Université de Poitiers, Ensma, France.
Thibault, D. , 2009, “ Étude du Refroidissement par Impact de jets à travers une paroi mince et avec un écoulement cisaillant amont: Application aux aubes de turbines,” Thèse du Doctorat de l'Université de Poitiers, Ensma, France.
Howell, J. R. , and Siegel, R. , 1969, Thermal Radiation Heat Transfer, Vol-II; Radiation Exchange Between Surfaces and in Enclosures, National Aeronautics and Space Administration, Washington, DC.
Moffat, R. J. , 1988, “ Describing the Uncertainties in Experimental Results,” Exp. Therm. Fluid Sci., 1(1), pp. 3–17. [CrossRef]
Eriksen, V. K. , and Goldstein, R. J. , 1974, “ Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes,” ASME J. Heat Transfer, 96(2), pp. 239–245. [CrossRef]
Sen, B. , Schmidt, D. L. , and Bogard, D. G. , 1996, “ Film Cooling With Compound Angle Holes: Heat Transfer,” ASME J. Turbomach., 118(4), pp. 800–806. [CrossRef]
Yuen, C. H. N. , and Martinez-Botas, R. F. , 2003b, “ Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow Part II: Heat Transfer Coefficients,” Int. J. Heat Mass Transfer, 46(2), pp. 237–249. [CrossRef]
Coulthard, S. M. , Volino, R. J. , and Flack, K. A. , 2007b, “ Effect of Jet Pulsing on Film Cooling-Part 2: Heat Transfer Results,” ASME Paper No. GT2006-91274.
Gritsch, M. , Schulz, A. , and Wittig, S. , 2000, “ Film-Cooling Holes With Expanded Exits: Near Hole Heat Transfer Coefficients,” Int. J. Heat Mass Transfer, 21(2), pp. 146–155.

Figures

Grahic Jump Location
Fig. 1

(a) Schematic diagram of injection flow system, R(0-1): pressure regulator, T0: temperature probe PT100, T(1-2) thermocouple type-K, (b) experimental arrangement for infrared thermography

Grahic Jump Location
Fig. 2

Heat transfer model, using a linear fit for four points

Grahic Jump Location
Fig. 3

Comparison of time-averaged profiles of U/U∞, lying at x/d = 3.5 and 5.5 of the hole central plane (z/d = 0), for different St (0, 0.2 0.3 and 0.5) examined under a range of M (0.65, 1 and 1.25), while M increasing columnwise and x/d increasing rowwise

Grahic Jump Location
Fig. 4

Steady blowing results for adiabatic effectiveness: (a) M= 0.65, (b) M= 1, (c) M= 1.25 and convective heat transfer coefficient: (d) M= 0.65, (e) M= 1, and (f) M= 1.25

Grahic Jump Location
Fig. 5

Film cooling at Ti/T∞=2, centerline effectiveness: (a) M= 0.65, (b) M= 1, (c) M= 1.25, and laterally averaged effectiveness: (d) M= 0.65, (e) M= 1, and (f) M= 1.25

Grahic Jump Location
Fig. 6

Film cooling at Ti/T∞=2, centerline heat transfer coefficient (a) M= 0.65, (b) M= 1, (c) M= 1.25, and laterally averaged heat transfer coefficient (d) M= 0.65, (e) M= 1, and (f) M= 1.25

Grahic Jump Location
Fig. 7

Comparison of film cooling parameters blowing at Ti/T∞=2, (a) centerline adiabatic effectiveness and (b) centerline Stanton number ratio

Grahic Jump Location
Fig. 8

Comparison of the laterally averaged heat transfer coefficient in the immediate downstream region

Grahic Jump Location
Fig. 9

Wall zone for estimating spatially averaged results

Grahic Jump Location
Fig. 10

Comparison of different cases of pulsation, Ti/T∞=2, (a) spatially averaged effectiveness and (b) spatially averaged heat transfer coefficient

Grahic Jump Location
Fig. 11

Film cooling at Ti/T∞=2, centerline NHFR (a) M= 0.65, (b) M= 1, (c) M= 1.25, and laterally averaged NHFR (d) M=0.65, (e) M= 1, and (f) M= 1.25

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In