0
Research Papers: Natural and Mixed Convection

Numerical Solutions of Natural Convection Flow of a Dusty Nanofluid About a Vertical Wavy Truncated Cone

[+] Author and Article Information
Sadia Siddiqa

Head, Department of Mathematics,
COMSATS Institute of Information Technology,
Kamra Road,
Attock 43600, Pakistan
e-mail: saadiasiddiqa@gmail.com

Naheed Begum

Institute of Applied Mathematics (LSIII),
TU Dortmund,
Vogelpothsweg 87,
Dortmund D-44221, Germany

M. A. Hossain

UGC Professor
Department of Mathematics,
University of Dhaka,
Dhaka 1000, Bangladesh

Rama Subba Reddy Gorla

Department of Mechanical & Civil Engineering,
Purdue University Northwest,
Westville, IN 46391
e-mail: rgorla@pnw.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 13, 2016; final manuscript received August 20, 2016; published online November 8, 2016. Assoc. Editor: Dr. Antonio Barletta.

J. Heat Transfer 139(2), 022503 (Nov 08, 2016) (11 pages) Paper No: HT-16-1378; doi: 10.1115/1.4034815 History: Received June 13, 2016; Revised August 20, 2016

This paper reports the numerical results for the natural convection flow of a two-phase dusty nanofluid along a vertical wavy frustum of a cone. The general governing equations are transformed into parabolic partial differential equations, which are then solved numerically with the help of implicit finite difference method. Comprehensive flow formations of carrier and dusty phases are given with the aim to predict the behavior of heat and mass transport across the heated wavy frustum of a cone. The effectiveness of utilizing the nanofluids to control skin friction and heat and mass transport is analyzed. The results clearly show that the shape of the waviness changes when nanofluid is considered. It is shown that the modified diffusivity ratio parameter, NA, extensively promotes rate of mass transfer near the vicinity of the cone, whereas heat transfer rate reduces.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Choi, S. U. S. , 1995, “ Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Development and Applications of Non-Newtonian Flows, D. A. Siginer , and H. P. Wang , eds., ASME, New York, pp. 99–105.
Xuan, Y. , and Li, Q. , 2000, “ Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Transfer Fluid Flow, 21(1), pp. 58–64. [CrossRef]
Nnanna, A. G. , 2007, “ Experimental Model of Temperature-Driven Nanofluids,” ASME J. Heat Transfer, 129(6), pp. 697–704. [CrossRef]
Mintsa, H. A. , Roy, G. , Nguyen, C. T. , and Doucet, D. , 2009, “ New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids,” Int. J. Therm. Sci., 48(2), pp. 363–371. [CrossRef]
Gu, B. , Hou, B. , Lu, Z. , Wang, Z. , and Chen, S. , 2013, “ Thermal Conductivity of Nanofluids Containing High Aspect Ratio Fillers,” Int. J. Heat Mass Transfer, 64, pp. 108–114. [CrossRef]
Sundar, L. S. , Farooky, M. H. , Sarada, S. N. , and Singh, M. K. , 2013, “ Experimental Thermal Conductivity of Ethylene Glycol and Water Mixture Based Low Volume Concentration of Al2O3 and CuO Nanofluids,” Int. Commun. Heat Mass Transfer, 41, pp. 41–46. [CrossRef]
Lomascolo, M. , Colangelo, G. , Milanese, M. , and Risi, A. D. , 2015, “ Review of Heat Transfer in Nanofluids: Conductive, Convective and Radiative Experimental Results,” Renewable Sustainable Energy Rev., 43, pp. 1182–1198. [CrossRef]
Colangelo, G. , Favale, E. , Risi, A. D. , and Laforgia, D. , 2012, “ Results of Experimental Investigations on the Heat Conductivity of Nanofluids Based on Diathermic Oil for High Temperature Applications,” Appl. Energy, 97, pp. 828–833. [CrossRef]
Colangelo, G. , Favale, E. , Miglietta, P. , Milanese, M. , and Risi, A. D. , 2016, “ Thermal Conductivity, Viscosity and Stability of A l 2 O 3-Diathermic Oil Nanofluids for Solar Energy Systems,” Energy, 95, pp. 124–136. [CrossRef]
Rudinger, G. , 1980, Fundamentals of Gas-Particle Flow, Elsevier, Amsterdam, The Netherlands.
Farbar, L. , and Morley, M. J. , 1957, “ Heat Transfer to Flowing Gas-Solid Mixtures in a Circular Tube,” Ind. Eng. Chem., 49(7), pp. 1143–1150. [CrossRef]
Saffman, P. G. , 1962, “ On the Stability of Laminar Flow of a Dusty Gas,” J. Fluid Mech., 13(01), pp. 120–128. [CrossRef]
Marble, F. E. , 1963, “ Dynamics of a Gas Containing Small Solid Particles,” Combustion and Propulsion, 5th AGARD Colloquium, Pergamon Press, Oxford, UK.
Singleton, R. E. , 1964, “ Fluid Mechanics of Gas-Solid Particle Flow in Boundary Layers,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
Michael, D. H. , and Miller, D. A. , 1966, “ Plane Parallel Flow of a Dusty Gas,” Mathematica, 13(1), pp. 97–109.
Michael, D. H. , 1968, “ The Steady Motion of a Sphere in a Dusty Gas,” J. Fluid Mech., 31(01), pp. 175–192. [CrossRef]
Datta, N. , and Mishra, S. K. , 1982, “ Boundary Layer Flow of a Dusty Fluid Over a Semi-Infinite Flat Plate,” Acta Mech., 42, pp. 71–83. [CrossRef]
Gireesha, B. J. , Bagewadi, C. S. , and Kumara, B. C. P. , 2009, “ Pulsatile Flow of an Unsteady Dusty Fluid Through Rectangular Channel,” Commun. Nonlinear Sci. Numer. Simul., 14(5), pp. 2103–2110. [CrossRef]
Gireesha, B. J. , Bagewadi, C. S. , and Kumara, B. C. P. , 2007, “ Flow of Unsteady Dusty Fluid Under Varying Pulsatile Pressure Gradient in Anholonomic Co-Ordinate System,” Electron. J. Theor. Phys., 4(14), pp. 9–16.
Siddiqa, S. , Hossain, M. A. , and Saha, S. C. , 2015, “ Two-Phase Natural Convection Flow of a Dusty Fluid,” Int. J. Numer. Method, 25(7), pp. 1542–1556.
Yao, L. S. , 1983, “ Natural Convection Along a Vertical Wavy Surface,” ASME J. Heat Transfer, 105(3), pp. 465–468. [CrossRef]
Moulic, S. G. , and Yao, L. S. , 1989, “ Natural Convection Along a Wavy Surface With Uniform Heat Flux,” ASME J. Heat Transfer, 111(4), pp. 1106–1108. [CrossRef]
Rees, D. A. S. , and Pop, I. , 1995, “ Free Convection Induced by a Vertical Wavy Surface With Uniform Heat Flux in a Porous Medium,” ASME J. Heat Transfer, 117(2), pp. 545–550. [CrossRef]
Siddiqa, S. , Hossain, M. A. , and Saha, S. C. , 2013, “ Natural Convection Flow With Surface Radiation Along a Vertical Wavy Surface,” Numer. Heat Transfer, Part A, 64(5), pp. 400–415. [CrossRef]
Pop, I. , and Na, T. Y. , 1995, “ Natural Convection From a Wavy Cone,” Appl. Sci. Res., 54(2), pp. 125–136. [CrossRef]
Na, T. Y. , and Chiou, J. P. , 1979, “ Laminar Natural Convection Over a Frustum of a Cone,” Appl. Sci. Res., 35, pp. 409–421. [CrossRef]
Pop, I. , and Na, T. Y. , 1999, “ Natural Convection Over a Vertical Wavy Frustum of a Cone,” J. Nonlinear Mech., 34(5), pp. 925–934. [CrossRef]
Siddiqa, S. , Begum, N. , and Hossain, M. A. , 2016, “ Radiation Effects From an Isothermal Vertical Wavy Cone With Variable Fluid Properties,” Appl. Math. Comput., 289, pp. 149–158.
Siddiqa, S. , Hina, G. , Begum, N. , Saleem, S. , Hossain, M. A. , and Gorla, R. S. R. , 2016, “ Numerical and Analytical Solution of Nanofluid Bioconvection Due to Gyrotactic Microorganisms Along a Vertical Wavy Cone,” Int. J. Heat Mass Transfer, 101, pp. 608–613. [CrossRef]
Siddiqa, S. , Begum, N. , Hossain, M. A. , and Massarotti, N. , 2016, “ Influence of Thermal Radiation on Contaminated Air and Water Flow Past a Vertical Wavy Frustum of a Cone,” Int. Commun. Heat Mass Transfer, 76, pp. 63–68. [CrossRef]
Apazidis, N. , 1990, “ Temperature Distribution and Heat Transfer in a Particle-Fluid Flow Past a Heated Horizontal Plate,” Int. J. Multiphase Flow, 16(3), pp. 495–513. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

Rate of heat transfer for a=0.0,0.25,0.5, while Dρ=0.0, Pr=6.7, αd=0.0, Nr = 0.0, NA=NB=0.0, ω=10 deg, and X0=1.0

Grahic Jump Location
Fig. 3

(a) τw, (b) Qw, and (c) Mw for a=(0.0,0.1,0.3), while ω=π/7, Pr=7.0, γ=0.1, αd=0.01, Dρ=10.0, Ec = 1.0, NA=1.0, NB=1.0, Ln = 10.0, Nr = 0.05, and X0=1.0

Grahic Jump Location
Fig. 4

(a) τw, (b) Qw, and (c) Mw for ω=(0.0,π/7,π/6), while a = 0.2, Pr=7.0, γ=0.1, αd=0.01, Dρ=10.0, Ec = 1.0, NA=1.0, NB=1.0, Ln = 10.0, Nr = 0.05, and X0=1.0

Grahic Jump Location
Fig. 5

(a) τw, (b) Qw, and (c) Mw for Dρ=0.0,10.0, while ω=π/7, a = 0.3, Pr=7.0, γ=0.1, αd=0.01, Ec = 2.0, NA=1.0, NB=1.0, Ln = 10.0, Nr = 0.05, and X0=1.0

Grahic Jump Location
Fig. 6

(a) τw, (b) Qw, and (c) Mw for NA=(0.0,5.0,10.0), while ω=π/7, a = 0.2, Pr=7.0, γ=0.1, αd=0.01, Dρ=10.0, Ec = 1.0, NB=1.0, Ln = 10.0, Nr = 0.05, and X0=1.0

Grahic Jump Location
Fig. 7

(a) τw, (b) Qw, and (c) Mw for NB=(0.0,1.0,5.0), while ω=π/7, a = 0.3, Pr=7.0, γ=0.1, αd=0.01, Dρ=10.0, Ec = 1.0, NA=1.0, Ln = 10.0, Nr = 0.05, and X0=1.0

Grahic Jump Location
Fig. 8

(a) τw, (b) Qw, and (c) Mw for Nr=(0.0,0.1,0.2), while ω=π/7, a = 0.2, Pr=7.0, γ=0.1, αd=0.01, Dρ=10.0, Ec = 0.1, NA=1.0, NB=1.0, Ln = 10.0, Nr = 0.05, and X0=1.0

Grahic Jump Location
Fig. 9

(a) Streamlines and (b) isotherms for Dρ=(0.0,10.0), while ω=π/7, a = 0.3, Pr=7.0, γ=0.1, αd=0.01, Ec = 1.0, NA=1.0, NB=1.0, Ln = 10.0, Nr = 0.05, and X0=1.0

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In