0
Research Papers: Max Jakob Award Paper

Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics1

[+] Author and Article Information
Ravi Radhakrishnan

Department of Chemical
and Biomolecular Engineering;
Department of Bioengineering,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: rradhak@seas.upenn.edu

Hsiu-Yu Yu

Department of Chemical and
Biomolecular Engineering,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: hsiuyu@seas.upenn.edu

David M. Eckmann

Department of Anesthesialogy
and Critical Care;
Department of Bioengineering,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: David.Eckmann@uphs.upenn.edu

Portonovo S. Ayyaswamy

Department of Mechanical Engineering
and Applied Mechanics,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: ayya@seas.upenn.edu

2Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 25, 2016; final manuscript received August 26, 2016; published online November 22, 2016. Assoc. Editor: Ravi Prasher.

J. Heat Transfer 139(3), 033001 (Nov 22, 2016) (9 pages) Paper No: HT-16-1229; doi: 10.1115/1.4035006 History: Received April 25, 2016; Revised August 26, 2016

Traditionally, the numerical computation of particle motion in a fluid is resolved through computational fluid dynamics (CFD). However, resolving the motion of nanoparticles poses additional challenges due to the coupling between the Brownian and hydrodynamic forces. Here, we focus on the Brownian motion of a nanoparticle coupled to adhesive interactions and confining-wall-mediated hydrodynamic interactions. We discuss several techniques that are founded on the basis of combining CFD methods with the theory of nonequilibrium statistical mechanics in order to simultaneously conserve thermal equipartition and to show correct hydrodynamic correlations. These include the fluctuating hydrodynamics (FHD) method, the generalized Langevin method, the hybrid method, and the deterministic method. Through the examples discussed, we also show a top-down multiscale progression of temporal dynamics from the colloidal scales to the molecular scales, and the associated fluctuations, hydrodynamic correlations. While the motivation and the examples discussed here pertain to nanoscale fluid dynamics and mass transport, the methodologies presented are rather general and can be easily adopted to applications in convective heat transfer.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yasuda, S. , and Yamamoto, R. , 2008, “ A Model for Hybrid Simulations of Molecular Dynamics and Computational Fluid Dynamics,” Phys. Fluids, 20(11), p. 113101. [CrossRef]
Yasuda, S. , and Yamamoto, R. , 2010, “ Multiscale Modeling and Simulation for Polymer Melt Flows Between Parallel Plates,” Phys. Rev. E, 81(3), p. 036308. [CrossRef]
Ayyaswamy, P. S. , Muzykantov, V. , Eckmann, D. M. , and Radhakrishnan, R. , 2013, “ Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation,” ASME J. Nanotechnol. Eng. Med., 4(1), pp. 101011–1010115.
Swaminathan, T. N. , Liu, J. , Balakrishnan, U. , Ayyaswamy, P. S. , Radhakrishnan, R. , and Eckmann, D. M. , 2011, “ Dynamic Factors Controlling Carrier Anchoring on Vascular Cells,” IUBMB Life, 63(8), pp. 640–647. [CrossRef] [PubMed]
Muzykantov, V. , Radhakrishnan, R. , and Eckmann, D. M. , 2012, “ Dynamic Factors Controlling Targeting Nanocarriers to Vascular Endothelium,” Curr. Drug Metab., 113, pp. 70–81. [CrossRef]
Agrawal, N. J. , and Radhakrishnan, R. , 2007, “ The Role of Glycocalyx in Nanocarrier-Cell Adhesion Investigated Using a Thermodynamic Model and Monte Carlo Simulations,” J. Phys. Chem. C: Nanomater. Interfaces, 111(43), pp. 15848–15856. [CrossRef] [PubMed]
Liu, J. , Weller, G. E. R. , Zern, B. , Ayyaswamy, P. S. , Eckmann, D. M. , Muzykantov, V. R. , and Radhakrishnan, R. , 2010, “ A Computational Model for Nanocarrier Binding to Endothelium Validated Using in vivo, in vitro, and Atomic Force Microscopy Experiments,” Proc. Natl. Acad. Sci. U. S. A., 107(38), pp. 16530–16535. [CrossRef] [PubMed]
Liu, J. , Agrawal, N. J. , Calderon, A. , Ayyaswamy, P. S. , Eckmann, D. M. , and Radhakrishnan, R. , 2011, “ Multivalent Binding of Nanocarrier to Endothelial Cells Under Shear Flow,” Biophys. J., 101(2), pp. 319–326. [CrossRef] [PubMed]
Sarkar, A. , Eckmann, D. M. , Ayyaswamy, P. S. , and Radhakrishnan, R. , 2015, “ Hydrodynamic Interactions of Deformable Polymeric Nanocarriers and the Effect of Crosslinking,” Soft Matter, 11(29), pp. 5955–5969. [CrossRef] [PubMed]
Ramakrishnan, N. , Eckmann, D. , Ayyaswamy, P. , Muzykantov, V. , and Radhakrishnan, R. , 2016, “ Biophysically Inspired Model for Functionalized Nanocarrier Targeting to Live Cells,” R. Soc. Open Sci., 3(6), p. 160260. [CrossRef] [PubMed]
Keblinski, P. , Prasher, R. , and Eapen, J. , 2008, “ Thermal Conductance of Fluids: Is the Controversy Over?,” J. Nanopart. Res., 10(7), pp. 1089–1097. [CrossRef]
Prasher, R. , Song, D. , Wang, J. , and Phelan, P. , 2006, “ Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications,” Appl. Phys. Lett., 89(13), p. 133108. [CrossRef]
Buongiorno, J. , Venerus, D. C. , Prabhat, N. , McKrell, T. , Townsend, J. , Christianson, R. , Tolmachev, Y. V. , Keblinski, P. , Hu, L. , Alvarado, J. L. , Bang, I. C. , Bishnoi, S. W. , Bonetti, M. , Botz, F. , Cecere, A. , Chang, Y. , Chen, G. , Chen, H. , Chung, S. J. , Chyu, M. K. , Das, S. K. , Di Paola, R. , Ding, Y. , Dubois, F. , Dzido, G. , Eapen, J. , Escher, W. , Funfschilling, D. , Galand, Q. , Gao, J. , Gharagozloo, P. E. , Goodson, K. E. , Gutierrez, J. G. , Hong, H. , Horton, M. , Hwang, K. S. , Iorio, C. S. , Jang, S. P. , Jarzebski, A. B. , Jiang, Y. , Jin, L. , Kabelac, S. , Kamath, A. , Kedzierski, M. A. , Kieng, L. G. , Kim, C. , Kim, J.-H. , Kim, S. , Lee, S. H. , Leong, K. C. , Manna, I. , Michel, B. , Ni, R. , Patel, H. E. , Philip, J. , Poulikakos, D. , Reynaud, C. , Savino, R. , Singh, Pawan K., Song, P. , Sundararajan, T. , Timofeeva, E. , Tritcak, T. , Turanov, A. N. , Van Vaerenbergh, S. , Wen, D. , Witharana, S. , Yang, C. , Yeh, W.-H. , Zhao, X.-Z. , and Zhou, S.-Q. , 2009, “ A Bench Mark Study of the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p. 094312. [CrossRef]
Kubo, R. , 1966, “ The Fluctuation-Dissipation Theorem,” Rep. Prog. Phys., 29(1), pp. 255–284. [CrossRef]
Landau, L. D. , and Lifshitz, E. M. , 1959, Fluid Mechanics, Pergamon Press, London.
Sharma, N. , and Patankar, N. A. , 2004, “ Direct Numerical Simulation of the Brownian Motion of Particles by Using Fluctuating Hydrodynamic Equations,” J. Comput. Phys., 201(2), pp. 466–486. [CrossRef]
Donev, A. , Vanden-Eijnden, E. , Garcia, A. L. , and Bell, J. B. , 2010, “ On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics,” Commun. Appl. Math. Comput. Sci., 5(2), pp. 149–197. [CrossRef]
Bell, J. , Garcia, A. , and Williams, S. , 2007, “ Numerical Methods for the Stochastic Landau-Lifshitz Navier-Stokes Equations,” Phys. Rev. E, 76(1), p. 016708. [CrossRef]
Williams, S. , Bell, J. , and Garcia, A. , 2008, “ Algorithm Refinement for Fluctuating Hydrodynamics,” Multiscale Model. Simul., 6(4), pp. 1256–1280. [CrossRef]
Ladd, A. J. C. , 1993, “ Short-Time Motion of Colloidal Particles: Numerical Simulation Via a Fluctuating Lattice-Boltzmann Equation,” Phys. Rev. Lett., 70(9), pp. 1339–1342. [CrossRef] [PubMed]
Ladd, A. J. C. , 1994, “ Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation,” J. Fluid Mech., 271, pp. 285–309. [CrossRef]
Ladd, A. J. C. , 1994, “ Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation. Part 2. Numerical Results,” J. Fluid Mech., 271, pp. 311–339. [CrossRef]
Patankar, N. A. , 2002, “ Direct Numerical Simulation of Moving Charged, Flexible Bodies With Thermal Fluctuations,” 2002 International Conference on Computational Nanoscience and Nanotechnology, Nano Science and Technology Institute, Vol. 2, pp. 93–96.
Adhikari, R. , Stratford, K. , Cates, M. E. , and Wagner, A. J. , 2005, “ Fluctuating Lattice–Boltzmann,” EPL (Europhys. Lett.), 71(3), pp. 473–479. [CrossRef]
Dünweg, B. , and Ladd, A. J. C. , 2008, “ Lattice–Boltzmann Simulations of Soft Matter Systems,” Adv. Polym. Sci., 221, pp. 89–166.
Nie, D. , and Lin, J. , 2009, “ A Fluctuating Lattice-Boltzmann Model for Direct Numerical Simulation of Particle Brownian Motion,” Particuology, 7(6), pp. 501–506. [CrossRef]
Iwashita, T. , Nakayama, Y. , and Yamamoto, R. , 2009, “ Velocity Autocorrelation Function of Fluctuating Particles in Incompressible Fluids,” Prog. Theor. Phys., 178, pp. 86–91. [CrossRef]
Iwashita, T. , Nakayama, Y. , and Yamamoto, R. , 2008, “ A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids,” J. Phys. Soc. Jpn., 77(7), p. 074007. [CrossRef]
Atzberger, P. J. , Kramer, P. R. , and Peskin, C. S. , 2007, “ A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales,” J. Comput. Phys., 224(2), pp. 1255–1292. [CrossRef]
Atzberger, P. J. , 2011, “ Stochastic Eulerian Lagrangian Methods for Fluidstructure Interactions With Thermal Fluctuations,” J. Comput. Phys., 230(8), pp. 2821–2837. [CrossRef]
Uma, B. , Swaminathan, T. N. , Radhakrishnan, R. , Eckmann, D. M. , and Ayyaswamy, P. S. , 2011, “ Nanoparticle Brownian Motion and Hydrodynamic Interactions in the Presence of Flow Fields,” Phys. Fluids, 23(7), p. 073602. [CrossRef]
Hauge, E. H. , and Martin-Löf, A. , 1973, “ Fluctuating Hydrodynamics and Brownian Motion,” J. Stat. Phys., 7(3), pp. 259–281. [CrossRef]
Zwanzig, R. , and Bixon, M. , 1970, “ Hydrodynamic Theory of the Velocity Correlation Function,” Phys. Rev. A, 2(5), pp. 2005–2012. [CrossRef]
Zwanzig, R. , and Bixon, M. , 1975, “ Compressibility Effects in the Hydrodynamic Theory of Brownian Motion,” J. Fluid Mech., 69(01), pp. 21–25. [CrossRef]
Li, T. , Kheifets, S. , Medellin, D. , and Raizen, M. , 2010, “ Measurement of the Instantaneous Velocity of a Brownian Particle,” Science, 328(5986), pp. 1673–1675. [CrossRef] [PubMed]
Huang, R. , Chavez, I. , Taute, K. , Lukic, B. , Jeney, S. , Raizen, M. , and Florin, E. , 2011, “ Direct Observation of the Full Transition From Ballistic to Diffusive Brownian Motion in a Liquid,” Nat. Phys., 7(7), pp. 576–580. [CrossRef]
Yu, H.-Y. , Eckmann, D. M. , Ayyaswamy, P. S. , and Radhakrishnan, R. , 2015, “ Composite Generalized Langevin Equation for Brownian Motion in Different Hydrodynamic and Adhesion Regimes,” Phys. Rev. E, 91(5), p. 052303. [CrossRef]
Uma, B. , Radhakrishnan, R. , Eckmann, D. M. , and Ayyaswamy, P. S. , 2013, “ A Hybrid Approach for the Simulation of a Nearly Neutrally Buoyant Nanoparticle Thermal Motion in an Incompressible Newtonian Fluid Medium,” ASME J. Heat Transfer, 135(1), p. 011011. [CrossRef]
Radhakrishnan, R. , Uma, B. , Liu, J. , Ayyaswamy, P. , and Eckmann, D. , 2013, “ Temporal Multiscale Approach for Nanocarrier Motion With Simultaneous Adhesion and Hydrodynamic Interactions in Targeted Drug Delivery,” J. Comput. Phys., 244, pp. 252–263. [CrossRef] [PubMed]
Zwanzig, R. , 2001, Nonequilibrium Statistical Mechanics, Oxford University Press, New York.
Uma, B. , Eckmann, D. M. , Ayyaswamy, P. S. , and Radhakrishnan, R. , 2012, “ A Hybrid Formalism Combining Fluctuating Hydrodynamics and Generalized Langevin Dynamics for the Simulation of Nanoparticle Thermal Motion in an Incompressible Fluid Medium,” Mol. Phys., 110(11–12), pp. 1057–1067. [CrossRef] [PubMed]
Uma, B. , Swaminathan, T. N. , Ayyaswamy, P. S. , Eckmann, D. M. , and Radhakrishnan, R. , 2011, “ Generalized Langevin Dynamics of a Nanoparticle Using a Finite Element Approach: Thermostating With Correlated Noise,” J. Chem. Phys., 135(11), p. 114104. [CrossRef] [PubMed]
Gotoh, T. , and Kaneda, Y. , 1982, “ Effect of an Infinite Plane Wall on the Motion of a Spherical Brownian Particle,” J. Chem. Phys., 76(6), pp. 3193–3197. [CrossRef]
Pagonabarraga, I. , Hagen, M. H. J. , Lowe, C. P. , and Frenkel, D. , 1998, “ Algebraic Decay of Velocity Fluctuations Near a Wall,” Phys. Rev. E, 58(6), pp. 7288–7295. [CrossRef]
Hagen, M. H. J. , Pagonabarraga, I. , Lowe, C. P. , and Frenkel, D. , 1997, “ Algebraic Decay of Velocity Fluctuations in a Confined Fluid,” Phys. Rev. Lett., 78(19), pp. 3785–3788. [CrossRef]
Felderhof, B. U. , 2005, “ Effect of the Wall on the Velocity Autocorrelation Function and Long-Time Tail of Brownian Motion,” J. Phys. Chem. B, 109(45), pp. 21406–21412. [CrossRef] [PubMed]
Franosch, T. , and Jeney, S. , 2009, “ Persistent Correlation of Constrained Colloidal Motion,” Phys. Rev. E, 79(3), p. 031402. [CrossRef]
Leal, G. L. , 2007, Advanced Transport Phenomena, Cambridge University Press, New York.
Jeffery, G. , 1915, “ On the Steady Rotation of a Solid of Revolution in a Viscous Fluid,” Proc. London Math. Soc., s2_14(1), pp. 327–338. [CrossRef]
Goldman, A. J. , Cox, R. G. , and Brenner, H. , 1967, “ Slow Viscous Motion of a Sphere Parallel to a Plane Wall. Part I. Motion Through a Quiescent Fluid,” Chem. Eng. Sci., 22(4), pp. 637–651. [CrossRef]
Vitoshkin, H. , Yu, H.-Y. , Eckmann, D. , Ayyaswamy, P. S. , and Radhakrishnan, R. , 2016, “ Nanocarrier Stochastic Motion in the Inertial Regime and Hydrodynamic Interactions Close to a Cylindrical Wall,” Phys. Rev. Fluids, 1(5), p. 054104.
Onsager, L. , 1931, “ Reciprocal Relations in Irreversible Processes. I.,” Phys. Rev., 37(4), pp. 405–426. [CrossRef]
Onsager, L. , 1931, “ Reciprocal Relations in Irreversible Processes. II.,” Phys. Rev., 38(12), pp. 2265–2279. [CrossRef]
Chandler, D. , 1987, Introduction to Modern Statistical Mechanics, Oxford University Press, New York.
Shang, B. Z. , Voulgarakis, N. K. , and Chu, J. W. , 2012, “ Fluctuating Hydrodynamics for Multiscale Modeling and Simulation: Energy and Heat Transfer in Molecular Fluids,” J. Chem. Phys., 137(4), p. 044117. [CrossRef] [PubMed]
Voulgarakis, N. K. , and Chu, J. W. , 2009, “ Bridging Fluctuating Hydrodynamics and Molecular Dynamics Simulations of Fluids,” J. Chem. Phys., 130(13), p. 134111. [CrossRef] [PubMed]
Voulgarakis, N. K. , Satish, S. , and Chu, J. W. , 2009, “ Modeling the Nanoscale Viscoelasticity of Fluids by Bridging Non-Markovian Fluctuating Hydrodynamics and Molecular Dynamics Simulations,” J. Chem. Phys., 131(23), p. 234115. [CrossRef] [PubMed]
Voulgarakis, N. K. , Satish, S. , and Chu, J. W. , 2010, “ Modelling the Viscoelasticity and Thermal Fluctuations of Fluids at the Nanoscale,” Mol. Simul., 36(7–8), pp. 552–559. [CrossRef]
Kou, S. C. , and Xie, X. S. , 2004, “ Generalized Langevin Equation With Fractional Gaussian Noise: Subdiffusion Within a Single Protein Molecule,” Phys. Rev. Lett., 93(18), p. 180603. [CrossRef] [PubMed]
Min, W. , Luo, G. , Cherayil, B. J. , Kou, S. C. , and Xie, X. S. , 2005, “ Observation of a Power-Law Memory Kernel for Fluctuations Within a Single Protein Molecule,” Phys. Rev. Lett., 94(19), p. 198302. [CrossRef] [PubMed]
Searles, D. J. , and Evans, D. J. , 2000, “ The Fluctuation Theorem and Greenkubo Relations,” J. Chem. Phys., 112(22), pp. 9727–9735. [CrossRef]
Ratanapisit, J. , Isbister, D. , and Ely, J. , 2001, “ Transport Properties of Fluids: Symplectic Integrators and Their Usefulness,” Fluid Phase Equilib., 183–184, pp. 351–361. [CrossRef]
Henry, A. , and Chen, G. , 2008, “ High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations,” Phys. Rev. Lett., 101(23), p. 235502. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic of the DNS computational domain and the FEM mesh representation

Grahic Jump Location
Fig. 2

The evolution of translational and rotational dynamics of a spherical particle (a=250 nm) in the inertial regime, when immersed in a Newtonian fluid (with properties of water) and confined at the center of a cylindrical vessel (D=20 μm), simulated using the FHD approach at temperature T0=310 K. (a) and (b) The probability distributions of the Cartesian components of the translational and rotational velocities showing the adherence to the corresponding Maxwell–Boltzmann distributions. (c) and (d) The short-time (t∼τν=a2/ν, where ν=μ/ρ and ρ is the fluid density) evolution of the linear velocity autocorrelation function (VACF) and angular velocity autocorrelation function (AVACF) in the inertial regime showing the correct asymptotic transition from the exponential behavior (ξ(tr)=6πμa and ξ(rot)=8πμa3) for t→0 to algebraic behavior fort>τν.

Grahic Jump Location
Fig. 3

(a) Normalized VACF of a non-neutrally buoyant Brownian particle near an infinite plane wall in an incompressible, quiescent fluid medium for different separations from the wall. The symbols are the corresponding results from Ref. [47], and the lines are the predictions from the composite GLE simulations reported by Yu et al. [37]; here ρp/ρ=2.25 with ρp being the density of the particle. (b) Normalized VACF of a neutrally buoyant Brownian particle in the lubrication regime with h/a=1.14 in the presence of a harmonic spring (representing strong adhesion with k = 1 N/m) and comparison with DNS and FHD simulations.

Grahic Jump Location
Fig. 4

(a) Schematic of the coarse-grained model considered. The ligand-functionalized nanoparticle of radius a is attached to the wall through ligand–receptor binding interaction (first spring with the force constant k), including the relaxation of receptor internal dynamics subject to the conformational potential (second spring with the force constant ks). The particle center of mass is located at h from the wall. The red dots from top to down: particle center-of-mass position xp, ligand tip position xl, receptor tip position xr, and receptor tip position at equilibrium xr0. (b) Normalized velocity autocorrelation functions for the nanoparticle for different conditions: in the bulk fluid predicted from the Stokes equation with Cv(t)=(kBT/M)×exp {−6πμat/M} (thin solid), in the bulk fluid obtained from the Navier–Stokes equation (thin dashed), close to the wall predicted from the lubrication theory with Cv(t)=(kBT/M)×exp {−6πμa2t/(M(h−a))} (thick solid), close to the wall obtained from the Navier–Stokes equation (thick dashed), and attached to the vessel wall calculated from the current GLE simulations (dotted). (c) Normalized position autocorrelation functions for the receptor tip (dashed) and the nanoparticle (dotted) obtained from the current GLE simulations compared with the analytical solution for the free protein reported in Refs. [59] and [60] (solid). Simulated probability distributions of the relative positions of (top) the nanoparticle center of mass and (bottom) the receptor tip. The black curves are the equilibrium Boltzmann distributions for the harmonically bound nanoparticle position, with the gray lines denoting the 5% error about the MBD, panel (d), and the free receptor tip position, panel (e).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In