0
Research Papers: Micro/Nanoscale Heat Transfer

Thermal Rectification of Silicene Nanosheets With Triangular Cavities by Molecular Dynamics Simulations

[+] Author and Article Information
Yuan Feng

Department of Engineering Mechanics,
Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education,
Tsinghua University,
Beijing 100084, China
e-mail: yuan-feng10@mails.tsinghua.edu.cn

Xingang Liang

Professor
Department of Engineering Mechanics,
Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education,
Tsinghua University,
Beijing 100084, China
e-mail: liangxg@mail.tsinghua.edu.cn

1Corresponding author.

Presented at the ASME 2016 5th Micro/Nanoscale Heat & Mass Transfer International Conference. Paper No. MNHMT2016-6496.Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 30, 2016; final manuscript received September 29, 2016; published online February 7, 2017. Assoc. Editor: Robert D. Tzou.

J. Heat Transfer 139(5), 052402 (Feb 07, 2017) (7 pages) Paper No: HT-16-1163; doi: 10.1115/1.4035015 History: Received March 30, 2016; Revised September 29, 2016

Silicene, the silicon-based two-dimensional structure with honeycomb lattice, has been discovered and expected to have tremendous application potential in fundamental industries. However, its thermal transport mechanism and thermal properties of silicene have not been fully explained. We report a possible way to control the thermal transport and thermal rectification in silicene nanosheets by distributing triangular cavities, which are arranged in a staggered way. The nonequilibrium molecular dynamics (NEMD) simulation method is used. The influences of the size, number, and distribution of cavities are investigated. The simulation results show that reflections of phonon at the vertex and the base of the triangular cavities are quite different. The heat flux is higher when heat flow is from the vertex to the base of cavities, resulting in thermal rectification effect. The thermal rectification effect is strengthened with increasing cavity size and number. A maximum of thermal rectification with varying distance between columns of cavities is observed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

(a) Schematic of simulation system of silicene nanosheet with designed triangular cavities and (b) illustration of configuration parameters

Grahic Jump Location
Fig. 2

Typical temperature distribution of the system (the legend represents the boundary conditions of x, y, and z directions)

Grahic Jump Location
Fig. 3

Variation of thermal rectification with cavity height (d2 = 0.8 nm and b = 0.7 nm)

Grahic Jump Location
Fig. 4

Variation of heat fluxes with cavity height (d2 = 0.8 nm and b = 0.7 nm)

Grahic Jump Location
Fig. 5

Variation of thermal rectification with the cavity base width (d1 = h nm and d2 = b nm)

Grahic Jump Location
Fig. 6

Variation of heat fluxes with the cavity base width (d1 = h nm and d2 = b nm)

Grahic Jump Location
Fig. 7

Sketch of phonon transmission: (a) qbase-vertex and (b) qvertex-base. Solid arrows represent the incident phonons. Dashed arrows represent the reflected phonons.

Grahic Jump Location
Fig. 8

Variation of thermal rectification with number of cavity columns (d1 = 2.6–6.0 nm, d2 = 0.8 nm, and b = 2.7 nm)

Grahic Jump Location
Fig. 9

Sketch of designed cavities with multiple numbers of columns: (a) one cavity in one column, (b) even number of columns, and (c) odd number of columns

Grahic Jump Location
Fig. 10

Variation of heat fluxes with number of cavity columns for d1 = 4.0 nm (d2 = 0.8 nm and b = 2.7 nm)

Grahic Jump Location
Fig. 11

Variation of thermal rectification with d1 (d2 = 0.8 nm and b = 2.7 nm)

Grahic Jump Location
Fig. 12

Variation of thermal rectification with the total number of cavities in two columns (d1 = h nm and d2 = b nm)

Grahic Jump Location
Fig. 13

Variation of heat fluxes with the total number of cavities in two columns (d1 = h nm and d2 = b nm)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In