Research Papers: Micro/Nanoscale Heat Transfer

Thermal Rectification of Silicene Nanosheets With Triangular Cavities by Molecular Dynamics Simulations

[+] Author and Article Information
Yuan Feng

Department of Engineering Mechanics,
Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education,
Tsinghua University,
Beijing 100084, China
e-mail: yuan-feng10@mails.tsinghua.edu.cn

Xingang Liang

Department of Engineering Mechanics,
Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education,
Tsinghua University,
Beijing 100084, China
e-mail: liangxg@mail.tsinghua.edu.cn

1Corresponding author.

Presented at the ASME 2016 5th Micro/Nanoscale Heat & Mass Transfer International Conference. Paper No. MNHMT2016-6496.Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 30, 2016; final manuscript received September 29, 2016; published online February 7, 2017. Assoc. Editor: Robert D. Tzou.

J. Heat Transfer 139(5), 052402 (Feb 07, 2017) (7 pages) Paper No: HT-16-1163; doi: 10.1115/1.4035015 History: Received March 30, 2016; Revised September 29, 2016

Silicene, the silicon-based two-dimensional structure with honeycomb lattice, has been discovered and expected to have tremendous application potential in fundamental industries. However, its thermal transport mechanism and thermal properties of silicene have not been fully explained. We report a possible way to control the thermal transport and thermal rectification in silicene nanosheets by distributing triangular cavities, which are arranged in a staggered way. The nonequilibrium molecular dynamics (NEMD) simulation method is used. The influences of the size, number, and distribution of cavities are investigated. The simulation results show that reflections of phonon at the vertex and the base of the triangular cavities are quite different. The heat flux is higher when heat flow is from the vertex to the base of cavities, resulting in thermal rectification effect. The thermal rectification effect is strengthened with increasing cavity size and number. A maximum of thermal rectification with varying distance between columns of cavities is observed.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Trushin, M. , and Schliemann, J. , 2007, “ Minimum Electrical and Thermal Conductivity of Graphene: A Quasiclassical Approach,” Phys. Rev. Lett., 99(21), p. 216602. [CrossRef] [PubMed]
Ghosh, S. , Calizo, I. , Teweldebrhan, D. , Pokatilov, E. P. , Nika, D. L. , Balandin, A. A. , Bao, W. , Miao, F. , and Lau, C. N. , 2008, “ Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits,” Appl. Phys. Lett., 92(15), p. 151911. [CrossRef]
Balandin, A. A. , Ghosh, S. , Bao, W. Z. , Calizo, I. , Teweldebrhan, D. , Miao, F. , and Lau, C. N. , 2008, “ Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., 8(3), pp. 902–907. [CrossRef] [PubMed]
Nika, D. L. , Ghosh, S. , Pokatilov, E. P. , and Balandin, A. A. , 2009, “ Lattice Thermal Conductivity of Graphene Flakes: Comparison With Bulk Graphite,” Appl. Phys. Lett., 94(20), p. 203103. [CrossRef]
Guo, Z. X. , Zhang, D. , and Gong, X. G. , 2009, “ Thermal Conductivity of Graphene Nanoribbons,” Appl. Phys. Lett., 95(16), p. 163103. [CrossRef]
Savin, A. V. , Kivshar, Y. S. , and Hu, B. , 2010, “ Suppression of Thermal Conductivity in Graphene Nanoribbons With Rough Edges,” Phys. Rev. B, 82(19), p. 195422. [CrossRef]
Evans, W. J. , Hu, L. , and Keblinski, P. , 2010, “ Thermal Conductivity of Graphene Ribbons From Equilibrium Molecular Dynamics: Effect of Ribbon Width, Edge Roughness, and Hydrogen Termination,” Appl. Phys. Lett., 96(20), p. 203112. [CrossRef]
Pei, Q. X. , Sha, Z. D. , and Zhang, Y. W. , 2011, “ A Theoretical Analysis of the Thermal Conductivity of Hydrogenated Graphene,” Carbon, 49(14), pp. 4752–4759. [CrossRef]
Pettes, M. T. , Jo, I. S. , Yao, Z. , and Shi, L. , 2011, “ Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene,” Nano Lett., 11(3), pp. 1195–1200. [CrossRef] [PubMed]
Nika, D. L. , Askerov, A. S. , and Balandin, A. A. , 2012, “ Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons,” Nano Lett., 12(6), pp. 3238–3244. [CrossRef] [PubMed]
Chen, S. S. , Wu, Q. Z. , Mishra, C. , Kang, J. Y. , Zhang, H. J. , Cho, K. J. , Cai, W. W. , Balandin, A. A. , and Ruoff, R. S. , 2012, “ Thermal Conductivity of Isotopically Modified Graphene,” Nat. Mater., 11(3), pp. 203–207. [CrossRef] [PubMed]
Takeda, K. , and Shiraishi, K. , 1994, “ Theoretical Possibility of Stage Corrugation in Si and Ge Analogs of Graphite,” Phys. Rev. B, 50(20), pp. 14916–14922. [CrossRef]
Resta, A. , Leoni, T. , Barth, C. , Ranguis, A. , Becker, C. , Bruhn, T. , Vogt, P. , and Le Lay, G. , 2013, “ Atomic Structures of Silicene Layers Grown on Ag (111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations,” Sci. Rep., 3, p. 2399. [PubMed]
Leandri, C. , Saifi, H. , Guillermet, O. , and Aufray, B. , 2001, “ Silicon Thin Films Deposited on Ag (001): Growth and Temperature Behavior,” Appl. Surf. Sci., 177(4), pp. 303–306. [CrossRef]
Meng, L. , Wang, Y. L. , Zhang, L. Z. , Du, S. X. , Wu, R. T. , Li, L. F. , Zhang, Y. , Li, G. , Zhou, H. T. , Hofer, W. A. , and Gao, H. J. , 2013, “ Buckled Silicene Formation on Ir (111),” Nano Lett., 13(2), pp. 685–690. [CrossRef] [PubMed]
Cahangirov, S. , Topsakal, M. , Akturk, E. , Sahin, H. , and Ciraci, S. , 2009, “ Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium,” Phys. Rev. Lett., 102(23), p. 236804. [CrossRef] [PubMed]
Ni, Z. Y. , Liu, Q. H. , Tang, K. C. , Zheng, J. X. , Zhou, J. , Qin, R. , Gao, Z. X. , Yu, D. P. , and Lu, J. , 2012, “ Tunable Bandgap in Silicene and Germanene,” Nano Lett., 12(1), pp. 113–118. [CrossRef] [PubMed]
Drummond, N. D. , Zolyomi, V. , and Fal'Ko, V. I. , 2012, “ Electrically Tunable Band Gap in Silicene,” Phys. Rev. B, 85(7), p. 75423. [CrossRef]
Scalise, E. , Houssa, M. , Pourtois, G. , Van Den Broek, B. , Afanas Ev, V. , and Stesmans, A. , 2013, “ Vibrational Properties of Silicene and Germanene,” Nano Res., 6(1), pp. 19–28. [CrossRef]
Zberecki, K. , Wierzbicki, M. , Barnas, J. , and Swirkowicz, R. , 2013, “ Thermoelectric Effects in Silicene Nanoribbons,” Phys. Rev. B, 88(11), p. 115404. [CrossRef]
Lebegue, S. , and Eriksson, O. , 2009, “ Electronic Structure of Two-Dimensional Crystals From Ab Initio Theory,” Phys. Rev. B, 79(11), p. 115409. [CrossRef]
Seol, J. H. , Jo, I. , Moore, A. L. , Lindsay, L. , Aitken, Z. H. , Pettes, M. T. , Li, X. S. , Yao, Z. , Huang, R. , Broido, D. , Mingo, N. , Ruoff, R. S. , and Shi, L. , 2010, “ Two-Dimensional Phonon Transport in Supported Graphene,” Science, 328(5975), pp. 213–216. [CrossRef] [PubMed]
Wang, L. , and Sun, H. , 2012, “ Thermal Conductivity of Silicon and Carbon Hybrid Monolayers: A Molecular Dynamics Study,” J. Mol. Model., 18(11), pp. 4811–4818. [CrossRef] [PubMed]
Ng, T. Y. , Yeo, J. J. , and Liu, Z. S. , 2013, “ Molecular Dynamics Simulation of the Thermal Conductivity of Shorts Strips of Graphene and Silicene: A Comparative Study,” Int. J. Mech. Mater. Des., 9(2SI), pp. 105–114. [CrossRef]
Gu, X. K. , and Yang, R. G. , 2015, “ First-Principles Prediction of Phononic Thermal Conductivity of Silicene: A Comparison With Graphene,” J. Appl. Phys., 117(2), p. 25102. [CrossRef]
Yang, K. , Cahangirov, S. , Cantarero, A. , Rubio, A. , and D'Agosta, R. , 2014, “ Thermoelectric Properties of Atomically Thin Silicene and Germanene Nanostructures,” Phys. Rev. B, 89(12), p. 125403. [CrossRef]
Zhang, X. L. , Xie, H. , Hu, M. , Bao, H. , Yue, S. Y. , Qin, G. Z. , and Su, G. , 2014, “ Thermal Conductivity of Silicene Calculated Using an Optimized Stillinger-Weber Potential,” Phys. Rev. B, 89(5), p. 54310. [CrossRef]
Xie, H. , Hu, M. , and Bao, H. , 2014, “ Thermal Conductivity of Silicene From First-Principles,” Appl. Phys. Lett., 104(13), p. 131906. [CrossRef]
Berdiyorov, G. R. , and Peeters, F. M. , 2014, “ Influence of Vacancy Defects on the Thermal Stability of Silicene: A Reactive Molecular Dynamics Study,” RSC Adv., 4(3), pp. 1133–1137. [CrossRef]
Pei, Q.-X. , Zhang, Y.-W. , Sha, Z.-D. , and Shenoy, V. B. , 2013, “ Tuning the Thermal Conductivity of Silicene With Tensile Strain and Isotopic Doping: A Molecular Dynamics Study,” J. Appl. Phys., 114(3), p. 33526. [CrossRef]
Liu, B. , Reddy, C. D. , Jiang, J. , Zhu, H. , Baimova, J. A. , Dmitriev, S. V. , and Zhou, K. , 2014, “ Thermal Conductivity of Silicene Nanosheets and the Effect of Isotopic Doping,” J. Phys. D: Appl. Phys., 47(16), p. 165301. [CrossRef]
Hu, M. , Zhang, X. L. , and Poulikakos, D. , 2013, “ Anomalous Thermal Response of Silicene to Uniaxial Stretching,” Phys. Rev. B., 87(19), p. 195417. [CrossRef]
Wang, Z. Y. , Feng, T. L. , and Ruan, X. L. , 2015, “ Thermal Conductivity and Spectral Phonon Properties of Freestanding and Supported Silicene,” J. Appl. Phys., 117(8), p. 84317. [CrossRef]
Zhang, X. L. , Bao, H. , and Hu, M. , 2015, “ Bilateral Substrate Effect on the Thermal Conductivity of Two-Dimensional Silicon,” Nanoscale, 7(14), pp. 6014–6022. [CrossRef] [PubMed]
Plimpton, S. , 1995, “ Fast Parallel Algorithms for Short-Range Molecular-Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Hu, J. , Ruan, X. , and Chen, Y. P. , 2009, “ Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study,” Nano Lett., 9(7), pp. 2730–2735. [CrossRef] [PubMed]
Ju, S. H. , and Liang, X. G. , 2012, “ Thermal Rectification and Phonon Scattering in Silicon Nanofilm With Cone Cavity,” J. Appl. Phys., 112(5), p. 54312. [CrossRef]
Li, H. P. , and Zhang, R. Q. , 2012, “ Vacancy-Defect-Induced Diminution of Thermal Conductivity in Silicene,” EPL Europhys. Lett., 99(3), p. 36001. [CrossRef]
Ju, S. H. , and Liang, X. G. , 2015, “ Detecting the Phonon Interference Effect in Si/Ge Nanocomposite by Wave Packets,” Appl. Phys. Lett., 106(20), p. 203107. [CrossRef]
Wang, Y. , Vallabhaneni, A. , Hu, J. N. , Qiu, B. , Chen, Y. P. , and Ruan, X. L. , 2014, “ Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures,” Nano Lett., 14(2), pp. 592–596. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 5

Variation of thermal rectification with the cavity base width (d1 = h nm and d2 = b nm)

Grahic Jump Location
Fig. 6

Variation of heat fluxes with the cavity base width (d1 = h nm and d2 = b nm)

Grahic Jump Location
Fig. 3

Variation of thermal rectification with cavity height (d2 = 0.8 nm and b = 0.7 nm)

Grahic Jump Location
Fig. 2

Typical temperature distribution of the system (the legend represents the boundary conditions of x, y, and z directions)

Grahic Jump Location
Fig. 1

(a) Schematic of simulation system of silicene nanosheet with designed triangular cavities and (b) illustration of configuration parameters

Grahic Jump Location
Fig. 4

Variation of heat fluxes with cavity height (d2 = 0.8 nm and b = 0.7 nm)

Grahic Jump Location
Fig. 7

Sketch of phonon transmission: (a) qbase-vertex and (b) qvertex-base. Solid arrows represent the incident phonons. Dashed arrows represent the reflected phonons.

Grahic Jump Location
Fig. 8

Variation of thermal rectification with number of cavity columns (d1 = 2.6–6.0 nm, d2 = 0.8 nm, and b = 2.7 nm)

Grahic Jump Location
Fig. 9

Sketch of designed cavities with multiple numbers of columns: (a) one cavity in one column, (b) even number of columns, and (c) odd number of columns

Grahic Jump Location
Fig. 10

Variation of heat fluxes with number of cavity columns for d1 = 4.0 nm (d2 = 0.8 nm and b = 2.7 nm)

Grahic Jump Location
Fig. 11

Variation of thermal rectification with d1 (d2 = 0.8 nm and b = 2.7 nm)

Grahic Jump Location
Fig. 12

Variation of thermal rectification with the total number of cavities in two columns (d1 = h nm and d2 = b nm)

Grahic Jump Location
Fig. 13

Variation of heat fluxes with the total number of cavities in two columns (d1 = h nm and d2 = b nm)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In