0
Technical Brief

Magnetohydrodynamics Mixed Convection Flow of a Nanofluid in an Isothermal Vertical Cone

[+] Author and Article Information
Palani Sudhagar

Department of Mathematics,
School of Advanced Sciences,
VIT University,
Vellore 632 014, India
e-mail: sudha81maths@gmail.com

Peri K. Kameswaran

Department of Mathematics,
School of Advanced Sciences,
VIT University,
Vellore 632 014, India
e-mail: perikamesh@gmail.com

B. Rushi Kumar

Department of Mathematics,
School of Advanced Sciences,
VIT University,
Vellore 632 014, India
e-mail: rushikumar@vit.ac.in

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received September 25, 2015; final manuscript received October 15, 2016; published online December 1, 2016. Assoc. Editor: Milind A. Jog.

J. Heat Transfer 139(3), 034503 (Dec 01, 2016) (5 pages) Paper No: HT-15-1620; doi: 10.1115/1.4035039 History: Received September 25, 2015; Revised October 15, 2016

A boundary layer analysis is laid out for the steady, laminar, mixed convection flow past an isothermal vertical cone embedded in a porous medium filled with a nanofluid. The model used for the nanofluid is one which includes the effects of Brownian motion and thermophoresis. A parametric study is performed for different physical parameters, such as magnetic (M), cone angle (m), mixed convection (χ), Brownian motion (Nt), and thermophoresis (Nb), on the velocity, temperature, and nanoparticle concentration profiles. The local Nusselt, Sherwood, and nanoparticle Sherwood number have been laid out in a graphical way. The dependency of the rate of heat and mass transfer on the governing parameters has been discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Choi, S. U. S. , Zhang, Z. G. , Yu, W. , Lockwood, F. E. , and Grulke, E. A. , 2001, “ Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,” Appl. Phys. Lett., 79(14), pp. 2252–2254. [CrossRef]
Buongiorno, J. , 2006, “ Convective Transport in Nanofluids,” ASME J. Heat Transfer, 128(3), pp. 240–250. [CrossRef]
Oztop, H. F. , and Abu-Nada, E. , 2008, “ Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids,” Int. J. Heat Fluid Flow, 29(5), pp. 1326–1336. [CrossRef]
Nield, D. A. , and Bejan, A. , 2006, Convection in Porous Media, 3rd ed., Springer-Verlag, New York.
Bejan, A. , Dincer, I. , Lorente, S. , Miguel, A. F. , and Reis, A. H. , 2004, Porous and Complex Flow Structures in Modern Technologies, Springer-Verlag, New York.
Vafai, K. , ed., 2005, Handbook of Porous Media, 2nd ed., Taylor & Francis, New York.
Yih, K. A. , 1999, “ Coupled Heat and Mass Transfer by Free Convection Over a Truncated Cone in Porous Media: VWT/VWC or VHF/VMF,” Acta Mech., 137(1), pp. 83–97. [CrossRef]
Yih, K. A. , 2000, “ Combined Heat and Mass Transfer in Mixed Convection Adjacent to a VWT/VWC or VHF/VMF Cone in a Porous Medium: The Entire Regime,” J. Porous Media, 3(2), pp. 185–191. [CrossRef]
Rushi Kumar, B. , and Sivaraj, R. , 2013, “ Heat and Mass Transfer in MHD Viscoelastic Fluid Flow Over a Vertical Cone and Flat Plate With Variable Viscosity,” Int. J. Heat Mass Transfer, 56(1–2), pp. 370–379. [CrossRef]
Kameswaran, P. K. , Sibanda, P. , Partha, M. K. , and Murthy, P. V. S. N. , 2014, “ Thermophoretic and Nonlinear Convection in Non-Darcy Porous Medium,” ASME J. Heat Transfer, 136(4), p. 042601. [CrossRef]
Chamkha, A. J. , Abbasbandy, S. , Rashad, A. M. , and Vajravelu, K. , 2012, “ Radiation Effects on Mixed Convection About a Cone Embedded in a Porous Medium Filled With a Nanofluid,” Meccanica, 48(2), pp. 275–285. [CrossRef]
Cheng, W. T. , and Lin, C. H. , 2007, “ Melting Effect on Mixed Convective Heat Transfer With Aiding and Opposing External Flows From the Vertical Plate in a Liquid Saturated Porous Medium,” Int. J. Heat Mass Transfer, 50(15–16), pp. 3026–3034. [CrossRef]
Yih, K. A. , 1998, “ Uniform Lateral Mass Flux Effect on Natural Convection of Non-Newtonian Fluids Over a Cone in Porous Media,” Int. Commun. Heat Mass Transfer, 25(7), pp. 959–968. [CrossRef]
Cheng, C.-Y. , 2011, “ Soret and Dufour Effects on Natural Convection Boundary Layer Flow Over a Vertical Cone in a Porous Medium With Constant Wall Heat and Mass Fluxes,” Int. Commun. Heat Mass Transfer, 38(1), pp. 44–48. [CrossRef]
Nkurikiyimfura, I. , Wang, Y. , and Pan, Z. , 2013, “ Heat Transfer Enhancement by Magnetic Nanofluids: A Review,” Renewable Sustainable Energy Rev., 21, pp. 548–561. [CrossRef]
Odenbach, S. , 2002, Magnetoviscous Effects in Ferrofluids, Springer-Verlag, Berlin.
Nield, D. A. , and Kuznetsov, A. V. , 2009, “ The Cheng–Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid,” Int. J. Heat Mass Transfer, 52(25–26), pp. 5792–5795. [CrossRef]
Yih, K. A. , 1998, “ Uniform Lateral Mass Flux Effect on Natural Convection of Non-Newtonian Fluids Over a Cone in Porous Media,” Int. Commun. Heat Mass Transfer, 25(7), pp. 959–968. [CrossRef]
Yih, K. A. , 1999, “ Mixed Convection About a Cone in a Porous Medium: The Entire Regime,” Int. Commun. Heat Mass Transfer, 26(7), pp. 1041–1050. [CrossRef]
Kumari, M. , and Gorla, R. S. R. , 1997, “ Combined Convection Along a Non-Isothermal Wedge in a Porous Medium,” Heat Mass Transfer, 32(5), pp. 393–398. [CrossRef]
Hsieh, J. C. , Chen, T. S. , and Armaly, B. F. , 1993, “ Mixed Convection Along a Nonisothermal Vertical Flat Plate Embedded in a Porous Medium: The Entire Regime,” Int. J. Heat Mass Transfer, 36(7), pp. 1819–1825. [CrossRef]
Yih, K. A. , 2011, “ Radiation Effect on Mixed Convection Over an Isothermal Cone in Porous Media,” Heat Mass Transfer, 37(1), pp. 53–57. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Flow model and physical coordinate system

Grahic Jump Location
Fig. 2

Nondimensional velocity profiles for various values of M, when Nc = 0.3, Nb = Nt = 0.2, Le = Ln = 10, Nr = Sr = χ = 0.5, and m = 0.1156458

Grahic Jump Location
Fig. 3

Variations of nanoparticle concentration profile for different values of Ln, when M = 1, Nc = Nt = 0.2, Nb = 0.3, Le = 10, and Nr = Sr = χ = m = 0.5

Grahic Jump Location
Fig. 4

Temperature profiles for different values of Nt and Nb, when M = 1, Nc = 0.3, Le = Ln = 10, Nr = Sr = χ = 0.5, and m = 0.1156458

Grahic Jump Location
Fig. 5

Variation of solute concentration profiles for different values of Sr, when M = 1, Nc = Nt = 0.2, Nb = 0.3, Le = Ln = 10, and Nr = m = χ = 0.5

Grahic Jump Location
Fig. 6

Effects of Le on mass transfer coefficient for various values of M, when Nc = Nt = 0.2, Nb = 0.3, Ln = 10, and Nr = Sr = χ = m = 0.5

Grahic Jump Location
Fig. 7

Heat transfer coefficient as a function of mixed convection parameter χ for different values of m, when M = 1, Nc = 0.2, Nb = Nt = 0.3, Nr = Sr = 0.5, and Le = Ln = 10

Grahic Jump Location
Fig. 8

Mass transfer coefficient as a function of mixed convection parameter for different values of Sr, when M = 1, Nc = 0.2, Nb = Nt = 0.3, Nr = m = 0.5, and Le = Ln = 10

Grahic Jump Location
Fig. 9

Effects of mixed convection parameter χ on nanoparticle mass transfer coefficient for different values of Ln, when M = 1, Nc = Nt = 0.2, Nb = 0.3, Le = 10, and Nr = Sr = m = 0.5

Grahic Jump Location
Fig. 10

Heat transfer coefficient as a function of magnetic parameter for different values of mixed convection parameter χ,when Nc = 0.2, Nb = Nt = 0.3, Nr = Sr = m = 0.5, and Le =  Ln = 10

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In