0
Technical Brief

Effect of Local Thermal Nonequilibrium on the Stability of Natural Convection in an Oldroyd-B Fluid Saturated Vertical Porous Layer

[+] Author and Article Information
B. M. Shankar

Department of Mathematics,
PES University,
Bangalore 560 085, India
e-mail: bmshankar@pes.edu

I. S. Shivakumara

Department of Mathematics,
Bangalore University,
Bangalore 560 056, India

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 1, 2016; final manuscript received November 4, 2016; published online January 18, 2017. Assoc. Editor: Dr. Antonio Barletta.

J. Heat Transfer 139(4), 044503 (Jan 18, 2017) (10 pages) Paper No: HT-16-1345; doi: 10.1115/1.4035199 History: Received June 01, 2016; Revised November 04, 2016

The effect of local thermal nonequilibrium (LTNE) on the stability of natural convection in a vertical porous slab saturated by an Oldroyd-B fluid is investigated. The vertical walls of the slab are impermeable and maintained at constant but different temperatures. A two-field model that represents the fluid and solid phase temperature fields separately is used for heat transport equation. The resulting stability eigenvalue problem is solved numerically using Chebyshev collocation method as the energy stability analysis becomes ineffective in deciding the stability of the system. Despite the basic state remains the same for Newtonian and viscoelastic fluids, it is observed that the base flow is unstable for viscoelastic fluids and this result is qualitatively different from Newtonian fluids. The results for Maxwell fluid are delineated as a particular case from the present study. It is found that the viscoelasticity has both stabilizing and destabilizing influence on the flow. Increase in the value of interphase heat transfer coefficient Ht, strain retardation parameter Λ2 and diffusivity ratio α portray stabilizing influence on the system while increasing stress relaxation parameter Λ1 and porosity-modified conductivity ratio γ exhibit an opposite trend.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gill, A. E. , 1969, “ A Proof That Convection in a Porous Vertical Slab is Stable,” J. Fluid Mech., 35(03), pp. 545–547. [CrossRef]
Rees, D. A. S. , 1988, “ The Stability of Prandtl–Darcy Convection in a Vertical Porous Slot,” Int. J. Heat Mass Transfer, 31(7), pp. 1529–1534. [CrossRef]
Lewis, S. , Bassom, A. P. , and Rees, D. A. S. , 1995, “ The Stability of Vertical Thermal Boundary Layer Flow in a Porous Medium,” Eur. J. Mech. B, 14(4), pp. 395–408.
Straughan, B. , 1988, “ A Nonlinear Analysis of Convection in a Porous Vertical Slab,” Geophys. Astrophys. Fluid Dyn., 42(3–4), pp. 269–275. [CrossRef]
Qin, Y. , and Kaloni, P. N. , 1993, “ A Nonlinear Stability Problem of Convection in a Porous Vertical Slab,” Phys. Fluids A, 5(8), pp. 2067–2069. [CrossRef]
Barletta, A. , and de B. Alves, L. S. , 2014, “ On Gill's Stability Problem for Non-Newtonian Darcy's Flow,” Int. J. Heat Mass Transfer, 79, pp. 759–768. [CrossRef]
Vafai, K. , and Sozen, M. , 1990, “ Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed,” ASME J. Heat Transfer, 112(3), pp. 690–699. [CrossRef]
Minkowycz, W. J. , Haji-Sheikh, A. , and Vafai, K. , 1999, “ On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: the Sparrow Number,” Int. J. Heat Mass Transfer, 42(18), pp. 3373–3385. [CrossRef]
Duval, F. , Fichot, F. , and Quintard, M. , 2004, “ A Local Thermal Non-Equilibrium Model for Two-Phase Flows With Phase-Change in Porous Media,” Int. J. Heat Mass Transfer, 47(3), pp. 613–639. [CrossRef]
Rees, D. A. S. , and Pop, I. , “ Local Thermal Non-Equilibrium in Porous Medium Convection,” Transport Phenomena in Porous Media III, D. B. Ingham and I. Pop , eds., Elsevier, Oxford, UK, pp. 147–173.
Rees, D. A. S. , 2010, “ Microscopic Modelling of the Two-Temperature Model for Conduction in Heterogeneous Media,” J. Porous Media, 13(2), pp. 125–143. [CrossRef]
Nield, D. A. , and Bejan, A. , 2013, Convection in Porous Media, 4th ed., Springer, New York.
Banu, N. , and Rees , D. A. S. , 2002, “ Onset of Darcy–Benard Convection Using a Thermal Non-Equilibrium Model,” Int. J. Heat Mass Transfer, 45(11), pp. 2221–2228. [CrossRef]
Malashetty, M. S. , Shivakumara, I. S. , and Kulkarni, S. , 2005, “ The Onset of Lapwood–Brinkman Convection Using a Non-Equilibrium Model,” Int. J. Heat Mass Transfer, 48(6), pp. 1155–1163. [CrossRef]
Shivakumara, I. S. , Malashetty, M. S. , and Chavaraddi, K. B. , 2006, “ Onset of Convection in a Viscoelastic Fluid Saturated Sparsely Packed Porous Layer Using a Thermal Non-Equilibrium Model,” Can. J. Phys., 84(11), pp. 973–990. [CrossRef]
Straughan, B. , 2010, “ Green-Naghdi Fluid With Non-Thermal Equilibrium Effects,” Proc. R. Soc. A, 466(2119), pp. 2021–2032. [CrossRef]
Celli, M. , Barletta, A. , and Storesletten, L. , 2013, “ Thermoconvective Instability and Local Thermal Non-Equilibrium in a Porous Layer With Isoflux-Isothermal Boundary Conditions,” 31st UIT Heat Transfer Conference, Como, Italy, June 25–27, pp. 45–53.
Barletta, A. , and Rees, D. A. S. , 2015, “ Local Thermal Non-Equilibrium Analysis of the Thermoconvective Instability in an Inclined Porous Layer,” Int. J. Heat Mass Transfer, 83, pp. 327–336. [CrossRef]
Barletta, A. , Celli, M. , and Lagziri, H. , 2015, “ Instability of a Horizontal Porous Layer With Local Thermal Non-Equilibrium: Effects of Free Surface and Convective Boundary Conditions,” Int. J. Heat Mass Transfer, 89, pp. 75–89. [CrossRef]
Rees, D. A. S. , 2011, “ The Effect of Local Thermal Nonequilibrium on the Stability of Convection in a Vertical Porous Channel,” Transp. Porous Media, 87(2), pp. 459–464. [CrossRef]
Scott, N. L. , and Straughan, B. , 2013, “ A Nonlinear Stability Analysis of Convection in a Porous Vertical Channel Including Local Thermal Nonequilibrium,” J. Math. Fluid Mech., 15(1), pp. 171–178. [CrossRef]
Straughan, B. , 2015, Convection With Local Thermal Nonequilibrium and Microfluidic Effects, Springer, Heidelberg.
Malashetty, M. S. , Tan, W. , and Swamy, M. , 2009, “ The Onset of Double Diffusive Convection in a Binary Viscoelastic Fluid Saturated Anisotropic Porous Layer,” Phys. Fluids, 21(8), p. 084101. [CrossRef]
Li, Z. , and Khayat, R. E. , 2005, “ Finite-Amplitude Rayleigh–Benard Convection and Pattern Selection for Viscoelastic Fluids,” J. Fluid Mech., 529, pp. 221–251. [CrossRef]
Sheu, L. J. , Tam, L. M. , Chen, J. H. , Chen, H. K. , Lin, K. T. , and Kang, Y. , 2008, “ Chaotic Convection of Viscoelastic Fluids in Porous Media,” Choas Solitons Fractals, 37(1), pp. 113–124. [CrossRef]
Malashetty, M. S. , and Kulkarni, S. , 2009, “ The Convective Instability of Maxwell Fluid-Saturated Porous Layer Using a Thermal Non-Equilibrium Model,” J. Non-Newtonian Fluid Mech., 162(1–3), pp. 29–37. [CrossRef]
Gozum, D. , and Arpaci, V. S. , 1974, “ Natural Convection of Viscoelastic Fluids in a Vertical Slot,” J. Fluid Mech., 64(03), pp. 439–448. [CrossRef]
Takashima, M. , 1993, “ The Stability of Natural Convection in a Vertical Layer of Viscoelastic Liquid,” Fluid Dyn. Res., 11(4), pp. 139–152. [CrossRef]
Alishaev, M. G. , and Mirzadjanzade, A. Kh. , 1975, “ For the Calculation of Delay Phenomenon in Filtration Theory,” Izvestya Vuzov Nefti Gaz. 6, pp. 71–78.
Khuzhayorov, B. , Auriault, J. L. , and Royer, P. , 2000, “ Derivation of Macroscopic Filtration Law for Transient Linear Viscoelastic Fluid Flow in Porous Media,” Int. J. Eng. Sci., 38(5), pp. 487–504. [CrossRef]
Akhatov, I. Sh. , and Chembarisova, R. G. , 1993, “ The Thermoconvective Instability in Hydrodynamics of Relaxational Liquids,” Instabilities in Multiphase Flows, G. Gouesbet and A. Berlemont , eds., Plenum Press, New York.
Bird, R. B. , Stewart, W. E. , and Lightfoot, E. N. , 2007, Transport Phenomena, Wiley, New York.
Hirata, S. C. , de B. Alves, L. S. , Delenda, N. , and Ouarzazi, M. N. , 2015, “ Convective and Absolute Instabilities in Rayleigh–Bénard–Poiseuille Mixed Convection for Viscoelastic Fluids,” J. Fluid Mech., 765, pp. 167–210. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Physical configuration

Grahic Jump Location
Fig. 2

Neutral stability curves

Grahic Jump Location
Fig. 3

Variation of (a) RD c, (b) ac, and (c) cc with Ht for various values of  Λ1 when Λ2=0.1,γ=0.5, and α=1

Grahic Jump Location
Fig. 4

Variation of (a) RD c, (b) ac, and (c) cc with Ht for various values of Λ2 when Λ1=0.5,γ=0.5, and α=1

Grahic Jump Location
Fig. 5

Variation of (a) RD c, (b) ac, and (c) cc with Ht for various values of  γ when Λ1=0.3,Λ2=0.1, and α=1

Grahic Jump Location
Fig. 6

Variation of (a) RD c, (b) ac, and (c) cc with Λ1 for various values of Ht and Λ2 when γ=0.5, α=1

Grahic Jump Location
Fig. 7

Variation of (a) RD c, (b) ac, and (c) cc with Λ1 for various values of α and Λ2 when Ht=20, γ=0.5

Grahic Jump Location
Fig. 8

Variation of (a) RD c, (b) ac, and (c) cc with Λ1 for various values of γ and Λ2 when Ht=20, α=1

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In