0
Research Papers: Heat and Mass Transfer

Electron–Phonon Coupled Heat Transfer and Thermal Response Induced by Femtosecond Laser Heating of Gold

[+] Author and Article Information
Pengfei Ji

Department of Mechanical and
Aerospace Engineering,
University of Missouri,
Columbia, MO 65211

Yuwen Zhang

Fellow ASME
Department of Mechanical and
Aerospace Engineering,
University of Missouri,
Columbia, MO 65211
e-mail: zhangyu@missouri.edu

1Corresponding author.

Presented a the 2016 ASME 5th Micro/Nanoscale Heat & Mass Transfer International Conference. Paper No. MNHMT2016-6428.Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received May 26, 2016; final manuscript received October 5, 2016; published online February 7, 2017. Assoc. Editor: Zhuomin Zhang.

J. Heat Transfer 139(5), 052001 (Feb 07, 2017) (6 pages) Paper No: HT-16-1309; doi: 10.1115/1.4035248 History: Received May 26, 2016; Revised October 05, 2016

Ab initio simulation is one of the most effective theoretical tools to study the electrons evolved heat transfer process. Here, we report the use of finite-temperature density functional theory (DFT) to investigate the electron thermal excitation, electron–phonon coupled heat transfer, and the corresponding thermal response induced by energy deposition of femtosecond laser pulse in gold. The calculated results for cases with different scales of electron excitations demonstrate significant electron temperature dependence of electron heat capacity and electron–phonon coupling factor. Bond hardening of laser-irradiated gold and structural variation from solid to liquid are observed. The obtained results shed light upon the ultrafast microscopic processes of thermal energy transport from electron subsystem to lattice subsystem and serve for an improved interpretation of femtosecond laser–metal interaction.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chase, T. , Trigo, M. , Reid, A. H. , Li, R. , Vecchione, T. , Shen, X. , Weathersby, S. , Coffee, R. , Hartmann, N. , Reis, D. A. , Wang, X. J. , and Dürr, H. A. , 2016, “ Ultrafast Electron Diffraction From Non-Equilibrium Phonons in Femtosecond Laser Heated Au Films,” Appl. Phys. Lett., 108(4), p. 041909. [CrossRef]
Ernstorfer, R. , Harb, M. , and Hebeisen, C. , 2009, “ The Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold,” Science, 323(5917), pp. 1033–1037. [CrossRef] [PubMed]
Gattass, R. R. , and Mazur, E. , 2008, “ Femtosecond Laser Micromachining in Transparent Materials,” Nat. Photonics, 2(4), pp. 219–225. [CrossRef]
Silvestrelli, P. L. , Alavi, A. , Parrinello, M. , and Frenkel, D. , 1997, “ Structural, Dynamical, Electronic, and Bonding Properties of Laser-Heated Silicon: An Ab Initio Molecular-Dynamics Study,” Phys. Rev. B, 56(7), pp. 3806–3812. [CrossRef]
Suárez, C. , Bron, W. E. , and Juhasz, T. , 1995, “ Dynamics and Transport of Electronic Carriers in Thin Gold Films,” Phys. Rev. Lett., 75(24), pp. 4536–4539. [CrossRef] [PubMed]
Ji, P. , and Zhang, Y. , 2013, “ Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study,” J. Phys. D Appl. Phys., 46(49), p. 495108. [CrossRef]
Bonn, M. , Denzler, D. N. , Funk, S. , Wolf, M. , Wellershoff, S.-S. , and Hohlfeld, J. , 2000, “ Ultrafast Electron Dynamics at Metal Surfaces: Competition Between Electron–Phonon Coupling and Hot-Electron Transport,” Phys. Rev. B, 61(2), pp. 1101–1105. [CrossRef]
Ji, P. , and Zhang, Y. , 2016, “ Ab Initio Determination of Effective Electron–Phonon Coupling Factor in Copper,” Phys. Lett. A, 380(17), pp. 1551–1555. [CrossRef]
Mermin, N. D. , 1965, “ Thermal Properties of the Inhomogeneous Electron Gas,” Phys. Rev., 137(5A), pp. A1441–A1443. [CrossRef]
Chichkov, B. N. , Momma, C. , Nolte, S. , von Alvensleben, F. , and Tünnermann, A. , 1996, “ Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids,” Appl. Phys. A, 63(2), pp. 109–115. [CrossRef]
Bulgakova, N. M. , Stoian, R. , Rosenfeld, A. , Hertel, I. V. , and Campbell, E. E. B. , 2004, “ Electronic Transport and Consequences for Material Removal in Ultrafast Pulsed Laser Ablation of Materials,” Phys. Rev. B, 69(5), p. 54102. [CrossRef]
Plech, A. , Kotaidis, V. , Lorenc, M. , and Boneberg, J. , 2006, “ Femtosecond Laser Near-Field Ablation From Gold Nanoparticles,” Nat. Phys., 2(1), pp. 44–47. [CrossRef]
Crouch, C. H. , Carey, J. E. , Warrender, J. M. , Aziz, M. J. , Mazur, E. , and Génin, F. Y. , 2004, “ Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon,” Appl. Phys. Lett., 84(11), p. 1850. [CrossRef]
Schoenlein, R. W. , Lin, W. Z. , Fujimoto, J. G. , and Eesley, G. L. , 1987, “ Femtosecond Studies of Nonequilibrium Electronic Processes in Metals,” Phys. Rev. Lett., 58(16), pp. 1680–1683. [CrossRef] [PubMed]
Mueller, B. Y. , and Rethfeld, B. , 2013, “ Relaxation Dynamics in Laser-Excited Metals Under Nonequilibrium Conditions,” Phys. Rev. B Condens. Matter Mater. Phys., 87(3), p. 035139. [CrossRef]
Waldecker, L. , Bertoni, R. , Vorberger, J. , Ernstorfer, R. , and Vorberger, J. , 2016, “ Electron–Phonon Coupling and Energy Flow in a Simple Metal Beyond the Two-Temperature Approximation,” Phys. Rev. X, 6(2), p. 21003.
Waldecker, L. , Bertoni, R. , and Ernstorfer, R. , 2015, “ Compact Femtosecond Electron Diffractometer With 100 keV Electron Bunches Approaching the Single-Electron Pulse Duration Limit,” J. Appl. Phys., 117(4), p. 044903. [CrossRef]
Wang, X. , and Xu, X. , 2003, “ Molecular Dynamics Simulation of Thermal and Thermomechanical Phenomena in Picosecond Laser Material Interaction,” Int. J. Heat Mass Transfer, 46(1), pp. 45–53. [CrossRef]
Ji, P. , and Zhang, Y. , 2016, “ Continuum-Atomistic Simulation of Picosecond Laser Heating of Copper With Electron Heat Capacity From Ab Initio Calculation,” Chem. Phys. Lett., 648, pp. 109–113. [CrossRef]
Gan, Y. , and Chen, J. K. , 2010, “ An Atomic-Level Study of Material Ablation and Spallation in Ultrafast Laser Processing of Gold Films,” J. Appl. Phys., 108(10), p. 103102. [CrossRef]
Ji, P. , and Zhang, Y. , 2013, “ First-Principles Molecular Dynamics Investigation of the Atomic-Scale Energy Transport: From Heat Conduction to Thermal Radiation,” Int. J. Heat Mass Transfer, 60, pp. 69–80. [CrossRef]
Ji, P. , Zhang, Y. , and Yang, M. , 2013, “ Structural, Dynamic, and Vibrational Properties During Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study,” J. Appl. Phys., 114(23), p. 234905. [CrossRef]
Anisimov, S. I. , Kapeliovich, B. L. , and Perel-man, T. L. , 1974, “ Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses,” J. Exp. Theor. Phys., 39(2), pp. 375–377.
Chen, J. K. , Tzou, D. Y. , and Beraun, J. E. , 2006, “ A Semiclassical Two-Temperature Model for Ultrafast Laser Heating,” Int. J. Heat Mass Transfer, 49(1–2), pp. 307–316. [CrossRef]
Jiang, L. , and Tsai, H.-L. , 2005, “ Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films,” ASME J. Heat Transfer, 127(10), pp. 1167–1173. [CrossRef]
Zhang, Y. , and Chen, J. K. , 2008, “ An Interfacial Tracking Method for Ultrashort Pulse Laser Melting and Resolidification of a Thin Metal Film,” ASME J. Heat Transfer, 130(6), p. 062401. [CrossRef]
Alavi, A. , Kohanoff, J. , Parrinello, M. , and Frenkel, D. , 1994, “ Ab Initio Molecular Dynamics With Excited Electrons,” Phys. Rev. Lett., 73(19), pp. 2599–2602. [CrossRef] [PubMed]
Gonze, X. , Amadon, B. , Anglade, P.-M. , Beuken, J.-M. , Bottin, F. , Boulanger, P. , Bruneval, F. , Caliste, D. , Caracas, R. , Côté, M. , Deutsch, T. , Genovese, L. , Ghosez, P. , Giantomassi, M. , Goedecker, S. , Hamann, D. R. R. , Hermet, P. , Jollet, F. , Jomard, G. , Leroux, S. , Mancini, M. , Mazevet, S. , Oliveira, M. J. T. J. T. , Onida, G. , Pouillon, Y. , Rangel, T. , Rignanese, G.-M. , Sangalli, D. , Shaltaf, R. , Torrent, M. , Verstraete, M. J. J. , Zerah, G. , and Zwanziger, J. W. W. , 2009, “ ABINIT: First-Principles Approach to Material and Nanosystem Properties,” Comput. Phys. Commun., 180(12), pp. 2582–2615. [CrossRef]
Holst, B. , Recoules, V. , Mazevet, S. , Torrent, M. , Ng, A. , Chen, Z. , Kirkwood, S. E. , Sametoglu, V. , Reid, M. , and Tsui, Y. Y. , 2014, “ Ab Initio Model of Optical Properties of Two-Temperature Warm Dense Matter,” Phys. Rev. B, 90(3), p. 035121. [CrossRef]
Hamann, D. R. , Schlüter, M. , and Chiang, C. , 1979, “ Norm-Conserving Pseudopotentials,” Phys. Rev. Lett., 43(20), pp. 1494–1497. [CrossRef]
Ceperley, D. M. , and Alder, B. J. , 1980, “ Ground State of the Electron Gas by a Stochastic Method,” Phys. Rev. Lett., 45(7), pp. 566–569. [CrossRef]
Monkhorst, H. J. , and Pack, J. D. , 1976, “ Special Points for Brillouin-Zone Integrations,” Phys. Rev. B, 13(12), pp. 5188–5192. [CrossRef]
CPMD, 2012, “CPMD,” ©IBM Corp., North Castle, NY (1990–2012)/©MPI fur Festkorperforschung, Stuttgart, Germany (1997–2001), IBM Corp. and Max-Planck Institut, Stuttgart, Germany, accessed 2012, http://www.cpmd.org
Sen, S. , and Dickinson, J. E. , 2003, “ Ab Initio Molecular Dynamics Simulation of Femtosecond Laser-Induced Structural Modification in Vitreous Silica,” Phys. Rev. B, 68(21), p. 214204. [CrossRef]
Silvestrelli, P. L. , and Parrinello, M. , 1998, “ Ab Initio Molecular Dynamics Simulation of Laser Melting of Graphite,” J. Appl. Phys., 83(5), p. 2478. [CrossRef]
Louie, S. G. , Froyen, S. , and Cohen, M. L. , 1982, “ Nonlinear Ionic Pseudopotentials in Spin-Density-Functional Calculations,” Phys. Rev. B, 26(4), pp. 1738–1742. [CrossRef]
Troullier, N. , and Martins, J. L. , 1991, “ Efficient Pseudopotentials for Plane-Wave Calculations,” Phys. Rev. B, 43(3), pp. 1993–2006. [CrossRef]
Nose, S. , 1999, “ Constant-Temperature Molecular Dynamics,” J. Phys. Condens. Matter, 115(2), pp. SA115–SA119.
Sundaram, S. K. , and Mazur, E. , 2002, “ Inducing and Probing Non-Thermal Transitions in Semiconductors Using Femtosecond Laser Pulses,” Nat. Mater., 1(4), pp. 217–224. [CrossRef] [PubMed]
Lin, Z. , Zhigilei, L. V. , and VCelli, V. , 2008, “ Electron–Phonon Coupling and Electron Heat Capacity of Metals Under Conditions of Strong Electron–Phonon Nonequilibrium,” Phys. Rev. B, 77(7), p. 075133. [CrossRef]
Bevillon, E. , Colombier, J. P. , Recoules, V. , and Stoian, R. , 2015, “ First-Principles Calculations of Heat Capacities of Ultrafast Laser-Excited Electrons in Metals,” Appl. Surf. Sci., 336(2015), pp. 79–84. [CrossRef]
Bévillon, E. , Colombier, J. P. , Recoules, V. , Stoian, R. , Bevillon, E. , Colombier, J. P. , Recoules, V. , and Stoian, R. , 2014, “ Free-Electron Properties of Metals Under Ultrafast Laser-Induced Electron–Phonon Nonequilibrium: A First-Principles Study,” Phys. Rev. B, 89(11), p. 115117. [CrossRef]
Jansen, A. , Mueller, F. , and Wyder, P. , 1977, “ Direct Measurement of Electron–Phonon Coupling α {2}F(ω) Using Point Contacts: Noble Metals,” Phys. Rev. B, 16(4), pp. 1325–1328. [CrossRef]
Wright, O. B. , 1994, “ Ultrafast Nonequilibrium Stress Generation in Gold and Silver,” Phys. Rev. B, 49(14), pp. 9985–9988. [CrossRef]
Groeneveld, R. H. M. , Sprik, R. , and Lagendijk, A. , 1995, “ Femtosecond Spectroscopy of Electron-Electron and Electron–Phonon Energy Relaxation in Ag and Au,” Phys. Rev. B, 51(17), pp. 11433–11445. [CrossRef]
Hohlfeld, J. , Wellershoff, S.-S. , Güdde, J. , Conrad, U. , Jähnke, V. , and Matthias, E. , 2000, “ Electron and Lattice Dynamics Following Optical Excitation of Metals,” Chem. Phys., 251(1–3), pp. 237–258. [CrossRef]
Shapiro, J. N. , 1970, “ Lindemann Law and Lattice Dynamics,” Phys. Rev. B, 1(10), pp. 3982–3989. [CrossRef]
Stillinger, F. H. , and Weber, T. A. , 1980, “ Lindemann Melting Criterion and the Gaussian Core Model,” Phys. Rev. B, 22(8), pp. 3790–3794. [CrossRef]
Yang, C. , Wang, Y. , and Xu, X. , 2012, “ Molecular Dynamics Studies of Ultrafast Laser-Induced Phase and Structural Change in Crystalline Silicon,” Int. J. Heat Mass Transfer, 55(21–22), pp. 6060–6066. [CrossRef]
Chokappa, D. K. , Cook, S. J. , and Clancy, P. , 1989, “ Nonequilibrium Simulation Method for the Study of Directed Thermal Processing,” Phys. Rev. B, 39(14), pp. 10075–10087. [CrossRef]
Cheng, C. , and Xu, X. , 2006, “ Molecular Dynamics Calculation of Critical Point of Nickel,” Int. J. Thermophys., 28(1), pp. 9–19. [CrossRef]
Recoules, V. , Clérouin, J. , Zérah, G. , Anglade, P. M. M. , and Mazevet, S. , 2006, “ Effect of Intense Laser Irradiation on the Lattice Stability of Semiconductors and Metals,” Phys. Rev. Lett., 96(5), p. 055503. [CrossRef] [PubMed]
Dumitrica, T. , and Allen, R. E. , 2002, “ Femtosecond-Scale Response of GaAs to Ultrafast Laser Pulses,” Phys. Rev. B, 66(8), p. 081202. [CrossRef]
Dumitrica, T. , Burzo, A. , Dou, Y. , and Allen, R. E. , 2004, “ Response of Si and InSb to Ultrafast Laser Pulses,” Phys. Status Solidi, 241(10), pp. 2331–2342. [CrossRef]
Jeschke, H. O. , Garcia, M. E. , and Bennemann, K. H. , 2001, “ Theory for the Ultrafast Ablation of Graphite Films,” Phys. Rev. Lett., 87(1), p. 015003. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 2

(a) Fermi–Dirac distribution function f and (b) electron density of states g for electrons temperature Te at 300 K, 10,000 K, 30,000 K, and 50,000 K. The black dots in (a) denote the location of chemical potential μ minus Fermi energy εF, at a given electron temperature Te.

Grahic Jump Location
Fig. 1

Responses of the lattice temperature Tl during and after femtosecond laser heating with electron temperature Te at 10,000 K, 30,000 K, and 50,000 K from 0 to 96.76 fs, respectively

Grahic Jump Location
Fig. 3

The electron–phonon spectral function α2F(ω) for Te at 300 K, 10,000 K, 30,000 K, and 50,000 K. The experimental result from Ref. [43] is added for comparison.

Grahic Jump Location
Fig. 4

Mean square displacement (MSD) of the cases at electron temperature Te 10,000 K (a), 30,000 K (b), and 50,000 K (c), respectively. The red curves in the inset show the mean square displacements before melting (based on the Lindemann's criterion: 0.0419 Å2). The femtosecond laser heating lasts from 0 to 0–96.76 fs.

Grahic Jump Location
Fig. 5

Radial distribution function (RDF) of the cases at electron temperature Te 10,000 K (a), 30,000 K (b), and 50,000 K (c), respectively. The femtosecond laser heating lasts from 0 to 0–96.76 fs.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In