Research Papers: Radiative Heat Transfer

Sub-Beam Size Temperature Measurement of Heavily Doped Silicon Heater Using Two-Wavelength Thermoreflectance Microscopy

[+] Author and Article Information
Jinsung Rho

Department of Mechanical Engineering,
Korea Advanced Institute of
Science and Technology,
Daejeon 34141, South Korea

Bong Jae Lee

Department of Mechanical Engineering,
Korea Advanced Institute of
Science and Technology,
Daejeon 34141, South Korea
e-mail: bongjae.lee@kaist.ac.kr

1Corresponding author.

Presented at the 2016 5th Micro/Nanoscale Heat & Mass Transfer International Conference. Paper No. MNHMT2016-6475.Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 18, 2016; final manuscript received November 8, 2016; published online February 7, 2017. Assoc. Editor: Zhuomin Zhang.

J. Heat Transfer 139(5), 052703 (Feb 07, 2017) (8 pages) Paper No: HT-16-1399; doi: 10.1115/1.4035251 History: Received June 18, 2016; Revised November 08, 2016

This work describes a novel technique for simultaneously determining local temperature and thickness of a heavily doped Si heater having a submicron width by using two-wavelength thermoreflectance microscopy. The doped silicon line heater, whose thickness and width are, respectively, 480 nm and 900 nm, is fabricated by conventional microfabrication techniques on a fused silica wafer. The full width at half maximum (FWHM) of the focused laser beam is measured to be 2.00 μm and 2.28 μm for green (λ = 516 nm) and red (λ = 640 nm) lasers, respectively. Because the heater width is narrower than the focused laser beam size, the reflected beam contains background information (i.e., reflection from the fused silica substrate) in addition to the thermoreflectance signal from the doped silicon heater. With precise knowledge of the laser beam size, heater width, and exact location of the laser beam spot on the heater, one can quantitatively model the reflectance. In reality, however, due to the difficulty of aligning the laser beam with respect to the submicron-wide Si heater, precise determination of local temperature from thermoreflectance signal is not easily attained. In the present study, instead of aligning the laser beam to the center of the submicron silicon heater, the probe laser horizontally scans over a region of the heater. By taking into account the size of the focused laser beam and the width of the doped silicon heater, it is possible to determine the absolute temperature of a local region of the heater from the measured reflectance during the scanning, even though the width of the heater line is only 39% of the size of the laser beam.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Cahill, D. G. , Goodson, K. , and Majumdar, A. , 2002, “ Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures,” ASME J. Heat Transfer, 124(2), pp. 223–241. [CrossRef]
Jellison, G. E., Jr. , and Burke, H. H. , 1986, “ The Temperature Dependence of the Refractive Index of Silicon at Elevated Temperatures at Several Laser Wavelengths,” J. Appl. Phys., 60(2), pp. 841–843. [CrossRef]
Kempkens, H. , Byszewski, W. W. , Gregor, P. D. , and Lapatovich, W. P. , 1990, “ Measurements of Electrode Temperature Evolution by Laser Light Reflection,” J. Appl. Phys., 67(8), pp. 3618–3624. [CrossRef]
England, J. M. C. , Zissis, N. , Timans, P. J. , and Ahmed, H. , 1991, “ Time-Resolved Reflectivity Measurements of Temperature Distributions During Swept-Line Electron-Beam Heating of Silicon,” J. Appl. Phys., 70(1), pp. 389–397. [CrossRef]
Boebel, F. G. , and Möller, H. , 1993, “ Simultaneous In Situ Measurement of Film Thickness and Temperature by Using Multiple Wavelengths Pyrometric Interferometry (MWPI),” IEEE Trans. Semicond. Manuf., 6(2), pp. 112–118. [CrossRef]
Ju, Y. S. , and Goodson, K. E. , 1998, “ Short-Time-Scale Thermal Mapping of Microdevices Using a Scanning Thermoreflectance Technique,” ASME J. Heat Transfer, 120(2), pp. 306–313. [CrossRef]
Tessier, G. , Holé, S. , and Fournier, D. , 2001, “ Quantitative Thermal Imaging by Synchronous Thermoreflectance With Optimized Illumination Wavelengths,” Appl. Phys. Lett., 78(16), pp. 2267–2269. [CrossRef]
Tessier, G. , Polignano, M. L. , Pavageau, S. , Filloy, C. , Fournier, D. , Cerutti, F. , and Mica, I. , 2006, “ Thermoreflectance Temperature Imaging of Integrated Circuits: Calibration Technique and Quantitative Comparison With Integrated Sensors and Simulations,” J. Phys. D: Appl. Phys., 39(19), p. 4159. [CrossRef]
Choi, W. J. , Ryu, S. Y. , Kim, J. K. , Kim, D. U. , Kim, G. H. , and Chang, K. S. , 2013, “ High-Speed Thermoreflectance Microscopy Using Charge-Coupled Device-Based Fourier-Domain Filtering,” Opt. Lett., 38(18), pp. 3581–3584. [CrossRef] [PubMed]
Kim, J. , Han, S. , Walsh, T. , Park, K. , Lee, B. J. , King, W. P. , and Lee, J. , 2013, “ Temperature Measurements of Heated Microcantilevers Using Scanning Thermoreflectance Microscopy,” Rev. Sci. Instrum., 84(3), p. 034903. [CrossRef] [PubMed]
Park, H. , Lee, B. J. , and Lee, J. , 2014, “ Note: Simultaneous Determination of Local Temperature and Thickness of Heated Cantilevers Using Two-Wavelength Thermoreflectance,” Rev. Sci. Instrum., 85(3), p. 036109. [CrossRef] [PubMed]
Grauby, S. , Dilhaire, S. , Jorez, S. , and Claeys, W. , 2005, “ Temperature Variation Mapping of a Microelectromechanical System by Thermoreflectance Imaging,” IEEE Electron. Device Lett., 26(2), pp. 78–80. [CrossRef]
Liu, Y. , and Mandelis, A. , 2009, “ Laser Optical and Photothermal Thermometry of Solids and Thin Films,” Radiometric Temperature Measurements: I. Fundamentals, (Experimental Methods in the Physical Sciences, Vol. 42), Z. M. Zhang , B. K. Tsai , and G. Machin , eds., Academic Press, Oxford, UK, pp. 297–336.
Grauby, S. , Forget, B. C. , Holé, S. , and Fournier, D. , 1999, “ High Resolution Photothermal Imaging of High Frequency Phenomena Using a Visible Charge Coupled Device Camera Associated With a Multichannel Lock-In Scheme,” Rev. Sci. Instrum., 70(9), pp. 3603–3608. [CrossRef]
Ippolito, S. B. , Thorne, S. A. , Eraslan, M. G. , Goldberg, B. B. , Ünlü, M. S. , and Leblebici, Y. , 2004, “ High Spatial Resolution Subsurface Thermal Emission Microscopy,” Appl. Phys. Lett., 84(22), pp. 4529–4531. [CrossRef]
Grauby, S. , Salhi, A. , Rampnoux, J.-M. , Michel, H. , Claeys, W. , and Dilhaire, S. , 2007, “ Laser Scanning Thermoreflectance Imaging System Using Galvanometric Mirrors for Temperature Measurements of Microelectronic Devices,” Rev. Sci. Instrum., 78(7), p. 074902. [CrossRef] [PubMed]
Lee, J. , Beechem, T. , Wright, T. L. , Nelson, B. A. , Graham, S. , and King, W. P. , 2006, “ Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters,” J. Microelectromech. Syst., 15(6), pp. 1644–1655. [CrossRef]
Abel, M. R. , Wright, T. L. , King, W. P. , and Graham, S. , 2007, “ Thermal Metrology of Silicon Microstructures Using Raman Spectroscopy,” IEEE Trans. Compon. Packag. Technol., 30(2), pp. 200–208. [CrossRef]
Hsu, I.-K. , Pettes, M. T. , Aykol, M. , Chang, C.-C. , Hung, W.-H. , Theiss, J. , Shi, L. , and Cronin, S. B. , 2011, “ Direct Observation of Heat Dissipation in Individual Suspended Carbon Nanotubes Using a Two-Laser Technique,” J. Appl. Phys., 110(4), p. 044328. [CrossRef]
Cahill, D. G. , Braun, P. V. , Chen, G. , Clarke, D. R. , Fan, S. , Goodson, K. E. , Keblinski, P. , King, W. P. , Mahan, G. D. , Majumdar, A. , Maris, H. J. , Phillpot, S. R. , Pop, E. , and Shi, L. , 2014, “ Nanoscale Thermal Transport—II: 2003-2012,” Appl. Phys. Rev., 1(1), p. 011305. [CrossRef]
Kang, K. , Koh, Y. K. , Chiritescu, C. , Zheng, X. , and Cahill, D. G. , 2008, “ Two-Tint Pump-Probe Measurements Using a Femtosecond Laser Oscillator and Sharp-Edged Optical Filters,” Rev. Sci. Instrum., 79(11), p. 114901. [CrossRef] [PubMed]
Jigami, T. , Kobayashi, M. , Taguchi, Y. , and Nagasaka, Y. , 2007, “ Development of Nanoscale Temperature Measurement Technique Using Near-Field Fluorescence,” Int. J. Thermophys., 28(3), pp. 968–979. [CrossRef]
Goodson, K. E. , and Asheghi, M. , 1997, “ Near-Field Optical Thermometry,” Microscale Thermophys. Eng., 1(3), pp. 225–235. [CrossRef]
Thorne, S. A. , Ippolito, S. B. , Ünlü, M. S. , and Goldberg, B. B. , 2002, “ High-Resolution Thermoreflectance Microscopy,” MRS Proc., 738, pp. G12.9.1–G12.9.6 [CrossRef]
Yang, J. , Maragliano, C. , and Schmidt, A. J. , 2013, “ Thermal Property Microscopy With Frequency Domain Thermoreflectance,” Rev. Sci. Instrum., 84(10), p. 104904. [CrossRef] [PubMed]
Martínez, O. E. , Balzarotti, F. , and Mingolo, N. , 2008, “ Thermoreflectance and Photodeflection Combined for Microscopic Characterization of Metallic Surfaces,” Appl. Phys. B, 90(1), pp. 69–77. [CrossRef]
Chiu, Y. , and Pan, J.-H. , 2007, “ Micro Knife-Edge Optical Measurement Device in a Silicon-on-Insulator Substrate,” Opt. Express, 15(10), pp. 6367–6373. [CrossRef] [PubMed]
Lee, B. J. , Zhang, Z. M. , Early, E. A. , DeWitt, D. P. , and Tsai, B. K. , 2005, “ Modeling Radiative Properties of Silicon With Coatings and Comparison With Reflectance Measurements,” J. Thermophys. Heat Transfer, 19(4), pp. 558–565. [CrossRef]
Wray, J. H. , and Neu, J. T. , 1969, “ Refractive Index of Several Glasses as a Function of Wavelength and Temperature,” J. Opt. Soc. Am., 59(6), pp. 774–776. [CrossRef]
Tessier, G. , Jerosolimski, G. , Holé, S. , Fournier, D. , and Filloy, C. , 2003, “ Measuring and Predicting the Thermoreflectance Sensitivity as a Function of Wavelength on Encapsulated Materials,” Rev. Sci. Instrum., 74(1), pp. 495–499. [CrossRef]
de Freitas, L. R. , da Silva, E. C. , Mansanares, A. M. , Tessier, G. , and Fournier, D. , 2005, “ Sensitivity Enhancement in Thermoreflectance Microscopy of Semiconductor Devices Using Suitable Probe Wavelengths,” J. Appl. Phys., 98(6), p. 063508. [CrossRef]
Wang, X. , and Huang, B. , 2014, “ Computational Study of in-Plane Phonon Transport in Si Thin Films,” Sci. Rep., 4, p. 6399. [CrossRef] [PubMed]
Incropera, F. P. , DeWitt, D. P. , Bergman, T. L. , and Lavine, A. S. , 2013, Principles of Heat and Mass Transfer, Wiley, Hoboken, NJ.
Kim, K. J. , and King, W. P. , 2009, “ Thermal Conduction Between a Heated Microcantilever and a Surrounding Air Environment,” Appl. Therm. Eng., 29(8-9), pp. 1631–1641. [CrossRef]
Tosaka, H. , Minami, K. , and Esashi, M. , 1995, “ Optical In Situ Monitoring of Silicon Diaphragm Thickness During Wet Etching,” J. Micromech. Microeng., 5(1), p. 41. [CrossRef]
Jiang, Z.-T. , Yamaguchi, T. , Aoyama, M. , and Hayashi, T. , 1998, “ Possibility of Simultaneous Monitoring of Temperature and Surface Layer Thickness of Si Substrate by In Situ Spectroscopic Ellipsometry,” Jpn. J. Appl. Phys., 37(2R), p. 479. [CrossRef]
Wan, Q. , Li, Q. H. , Chen, Y. J. , Wang, T. H. , He, X. L. , Li, J. P. , and Lin, C. L. , 2004, “ Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors,” Appl. Phys. Lett., 84(18), pp. 3654–3656. [CrossRef]
Buzea, C. , and Robbie, K. , 2005, “ State of the Art in Thin Film Thickness and Deposition Rate Monitoring Sensors,” Rep. Prog. Phys., 68(2), p. 385. [CrossRef]
Fonseca, L. , Santander, J. , Rubio, R. , Sabaté, N. , Figueras, E. , Duch, M. , Grácia, I. , and Cané, C. , 2008, “ Use of Boron Heavily Doped Silicon Slabs for Gas Sensors Based on Free-Standing Membranes,” Sens. Actuator B-Chem., 130(1), pp. 538–545. [CrossRef]
Yeo, J. , Kim, G. , Hong, S. , Lee, J. , Kwon, J. , Lee, H. , Park, H. , Manoroktul, W. , Lee, M.-T. , Lee, B. J. , Grigoropoulos, C. P. , and Ko, S. H. , 2014, “ Single Nanowire Resistive Nano-Heater for Highly Localized Thermo-Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth,” Small, 10(24), pp. 5015–5022. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Schematic of the scanning two-wavelength thermoreflectance microscope

Grahic Jump Location
Fig. 2

Optical images of the fabricated silicon line heaters: (a) microheater and (b) submicron-wide heater. Scanning electron microscope images of (c) microheater and (d) submicron-wide heater.

Grahic Jump Location
Fig. 3

Characterization of two laser diodes: (a) wavelength and (b) focused beam size measured using the knife-edge method

Grahic Jump Location
Fig. 4

The temperature-dependent reflectance of the 4.74 -μm-wide heater: (a) effect of the spectral bandwidth of lasers, (b) room-temperature fitting analysis for determination of the thickness, (c) comparison between the theoretical model and the measured reflectance at various temperature conditions, and (d) comparison of the fitted temperature from the thermoreflectance with the measured temperature in a furnace. The inset of (c) shows the focused laser beams on the microheater.

Grahic Jump Location
Fig. 5

Illustration of laser beam scan for a sub-beam size Si heater: (a) variation of the measured reflectance with the 516-nm laser during the scanning motion of the stage, (b) positions of the laser beam and the heater when the measured reflectance increases as the stage moves, (c) positions of the laser beam and the heater when the reflectance reaches the maximum (perfect alignment), and (d) positions of the laser beam and the heater when the measured reflectance decreases as the stage moves further from the center

Grahic Jump Location
Fig. 6

The temperature-dependent reflectance of the 900-nm-wide heater: (a) effect of the laser beam size relative to the heater width shown by the theoretical model, (b) room-temperature fitting analysis for determination of the thickness, (c) comparison between the theoretical model and the measured reflectance at various temperature conditions, and (d) comparison of the fitted temperature from the thermoreflectance with the measured temperature in a furnace

Grahic Jump Location
Fig. 7

Local temperature with respect to the input power for two Si heaters. The inset shows the simulation domain constructed in ansys.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In