0
Research Papers: Radiative Heat Transfer

A Computational Simulation of Using Tungsten Gratings in Near-Field Thermophotovoltaic Devices

[+] Author and Article Information
J. I. Watjen

George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

X. L. Liu

George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332;
School of Energy and Power Engineering,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

B. Zhao

George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Z. M. Zhang

Fellow ASME
George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: zhuomin.zhang@me.gatech.edu

1Corresponding author.

Presented at the 2016 ASME 5th Micro/Nanoscale Heat & Mass Transfer International Conference. Paper No. MNHMT2016-6632.Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 15, 2016; final manuscript received November 21, 2016; published online February 14, 2017. Assoc. Editor: Chun Yang.

J. Heat Transfer 139(5), 052704 (Feb 14, 2017) (8 pages) Paper No: HT-16-1207; doi: 10.1115/1.4035356 History: Received April 15, 2016; Revised November 21, 2016

Near-field thermophotovoltaic (NFTPV) devices have received much attention lately as an alternative energy harvesting system, whereby a heated emitter exchanges super-Planckian thermal radiation with a photovoltaic (PV) cell to generate electricity. This work describes the use of a grating structure to enhance the power throughput of NFTPV devices, while increasing the energy conversion efficiency by ensuring that a large portion of the radiation entering the PV cell is above the band gap. The device contains a high-temperature tungsten grating that radiates photons to a room-temperature In0.18Ga0.82Sb PV cell through a vacuum gap of several tens of nanometers. Scattering theory is used along with the rigorous coupled-wave analysis (RCWA) to calculate the radiation energy exchange between the grating emitter and the TPV cell. A parametric study is performed by varying the grating depth, period, and ridge width in the range that can be fabricated using available fabrication technologies. It is found that the power output can be increased by 40% while improving the efficiency from 29.9% to 32.0% with a selected grating emitter as compared to the case of a flat tungsten emitter. Reasons for the enhancement are found to be due to the enhanced energy transmission coefficient close to the band gap. This work shows a possible way of improving NFTPV and sheds light on how grating structures interact with thermal radiation at the nanoscale.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zhang, Z. M. , 2007, Nano/Microscale Heat Transfer, McGraw-Hill, New York.
Xuan, Y. , 2014, “ An Overview of Micro/Nanoscaled Thermal Radiation and Its Applications,” Photonics Nanostruct. Fundam. Appl., 12(2), pp. 93–113. [CrossRef]
Liu, X. L. , Wang, L. P. , and Zhang, Z. M. , 2015, “ Near-Field Thermal Radiation: Recent Progress and Outlook,” Nanoscale Microscale Thermophys. Eng., 19(2), pp. 98–126. [CrossRef]
Cahill, D. G. , Braun, P. V. , Chen, G. , Clarke, D. R. , Fan, S. , Goodson, K. E. , Keblinski, P. , King, W. P. , Mahan, G. D. , Majumdar, A. , Maris, H. J. , Phillpot, S. R. , Pop, E. , and Shi, L. , 2014, “ Nanoscale Thermal Transport: II. 2003–2012,” Appl. Phys. Rev., 1(1), p. 011305. [CrossRef]
Biehs, S.-A. , Ben-Abdallah, P. , and Rosa, F. S. , 2012, “ Nanoscale Radiative Heat Transfer and Its Applications,” Infrared Radiation, V. Morozhenko , ed., InTech, Rijeka, Croatia, Chap. 1.
Rytov, S. M. , Kravtsov, Y. A. , and Tatarskii, V. I. , 1989, Principles of Statistical Radiophysics, Springer, New York.
Kittel, A. , Muller-Hirsch, W. , Parisi, J. , Biehs, S.-A. , Reddig, D. , and Holthaus, M. , 2005, “ Near-Field Heat Transfer in a Scanning Thermal Microscope,” Phys. Rev. Lett., 95(22), p. 224301. [CrossRef] [PubMed]
Rousseau, E. , Siria, A. , Jourdan, G. , Volz, S. , Comin, F. , Chevrier, J. , and Greffet, J.-J. , 2009, “ Radiative Heat Transfer at the Nanoscale,” Nat. Photonics, 3(9), pp. 514–517. [CrossRef]
Shen, S. , Narayanaswamy, A. , and Chen, G. , 2009, “ Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps,” Nano Lett., 9(8), pp. 2909–2913. [CrossRef] [PubMed]
Song, B. , Ganjeh, Y. , Sadat, S. , Thompson, D. , Fiorino, A. , Fernández-Hurtado, V. , Feist, J. , Garcia-Vidal, F. J. , Cuevas, J. C. , Reddy, P. , and Meyhofer, E. , 2015, “ Enhancement of Near-Field Radiative Heat Transfer Using Polar Dielectric Thin Films,” Nat. Nanotechnol., 10(3), pp. 253–258. [CrossRef] [PubMed]
St-Gelais, R. , Guha, B. , Zhu, L. , Fan, S. , and Lipson, M. , 2014, “ Demonstration of Strong Near-Field Radiative Heat Transfer Between Integrated Nanostructures,” Nano Lett., 14(12), pp. 6971–6975. [CrossRef] [PubMed]
Lim, M. , Lee, S. S. , and Lee, B. J. , 2015, “ Near-Field Thermal Radiation Between Doped Silicon Plates at Nanoscale Gaps,” Phys. Rev. B, 91(19), p. 195136. [CrossRef]
Basu, S. , Chen, Y.-B. , and Zhang, Z. M. , 2007, “ Microscale Radiation in Thermophotovoltaic Devices: A Review,” Int. J. Energy Res., 31(6–7), pp. 689–716. [CrossRef]
Park, K. , Basu, S. , King, W. P. , and Zhang, Z. M. , 2008, “ Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution,” J. Quant. Spectrosc. Radiat. Transfer, 109(2), pp. 305–316. [CrossRef]
Francoeur, M. , Vaillon, R. , and Mengüç, M. P. , 2011, “ Thermal Impacts on the Performance of Nanoscale-Gap Thermophotovoltaic Power Generators,” IEEE Trans. Energy Convers., 26(2), pp. 686–698. [CrossRef]
Laroche, M. , Carminati, R. , and Greffet, J.-J. , 2006, “ Near-Field Thermophotovoltaic Energy Conversion,” J. Appl. Phys., 100(6), p. 063704. [CrossRef]
Narayanaswamy, A. , and Chen, G. , 2003, “ Surface Modes for Near Field Thermophotovoltaics,” Appl. Phys. Lett., 82(20), pp. 3544–3546. [CrossRef]
Dimatteo, R. S. , Greiff, P. , Finberg, S. L. , Young-Waithe, K. A. , Choy, H. K. H. , Masaki, M. M. , and Fonstad, C. G. , 2001, “ Enhanced Photogeneration of Carriers in a Semiconductor Via Coupling Across a Nonisothermal Nanoscale Vacuum Gap,” Appl. Phys. Lett., 79(12), pp. 1894–1896. [CrossRef]
Yang, W. , Chou, S. , Shu, C. , Xue, H. , Li, Z. , Li, D. , and Pan, J. , 2003, “ Microscale Combustion Research for Application to Micro Thermophotovoltaic Systems,” Energy Convers. Manage., 44(16), pp. 2625–2634. [CrossRef]
Bermel, P. , Ghebrebrhan, M. , Chan, W. , Yeng, Y. X. , Araghchini, M. , Hamam, R. , Marton, C. H. , Jensen, K. F. , Soljačić, M. , and Joannopoulos, J. D. , 2010, “ Design and Global Optimization of High-Efficiency Thermophotovoltaic Systems,” Opt. Express, 18(S3), pp. A314–A334. [CrossRef] [PubMed]
Datas, A. , 2015, “ Optimum Semiconductor Bandgaps in Single Junction and Multijunction Thermophotovoltaic Converters,” Sol. Energy Mater. Sol. Cells, 134, pp. 275–290. [CrossRef]
Greffet, J.-J. , Carminati, R. , Joulain, K. , Mulet, J.-P. , Mainguy, S. , and Chen, Y. , 2002, “ Coherent Emission of Light by Thermal Sources,” Nature, 416(6876), pp. 61–64. [CrossRef] [PubMed]
Wang, H. , Yang, Y. , and Wang, L. P. , 2014, “ Switchable Wavelength-Selective and Diffuse Metamaterial Absorber/Emitter With a Phase Transition Spacer Layer,” Appl. Phys. Lett., 105(7), p. 071907. [CrossRef]
Zhao, B. , and Zhang, Z. M. , 2014, “ Study of Magnetic Polaritons in Deep Gratings for Thermal Emission Control,” J. Quant. Spectrosc. Radiat. Transfer, 135, pp. 81–89. [CrossRef]
Liu, X. L. , Wang, L. P. , and Zhang, Z. M. , 2013, “ Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays,” ASME J. Heat Transfer, 135(6), p. 061602. [CrossRef]
Lee, B. J. , Chen, Y.-B. , Han, S. , Chiu, F.-C. , and Lee, H. J. , 2014, “ Wavelength-Selective Solar Thermal Absorber With Two-Dimensional Nickel Gratings,” ASME J. Heat Transfer, 136(7), p. 072702. [CrossRef]
Rephaeli, E. , and Fan, S. , 2009, “ Absorber and Emitter for Solar Thermo-Photovoltaic Systems to Achieve Efficiency Exceeding the Shockley-Queisser Limit,” Opt. Express, 17(17), pp. 15145–15159. [CrossRef] [PubMed]
Lenert, A. , Bierman, D. M. , Nam, Y. , Chan, W. R. , Celanović, I. , Soljačić, M. , and Wang, E. N. , 2014, “ A Nanophotonic Solar Thermophotovoltaic Device,” Nat. Nanotechnol., 9(2), pp. 126–130. [CrossRef] [PubMed]
Wu, C. , Neuner, B., III , John, J. , Milder, A. , Zollars, B. , Savoy, S. , and Shvets, G. , 2012, “ Metamaterial-Based Integrated Plasmonic Absorber/Emitter for Solar Thermo-Photovoltaic Systems,” J. Opt., 14(2), p. 024005. [CrossRef]
Wang, L. P. , and Zhang, Z. M. , 2012, “ Wavelength-Selective and Diffuse Emitter Enhanced by Magnetic Polaritons for Thermophotovoltaics,” Appl. Phys. Lett., 100(6), p. 063902. [CrossRef]
Yeng, Y. X. , Chan, W. R. , Rinnerbauer, V. , Joannopoulos, J. D. , Soljačić, M. , and Celanovic, I. , 2013, “ Performance Analysis of Experimentally Viable Photonic Crystal Enhanced Thermophotovoltaic Systems,” Opt. Express, 21(S6), pp. A1035–A1051. [CrossRef] [PubMed]
Kohiyama, A. , Shimizu, M. , Kobayashi, H. , Iguchi, F. , and Yugami, H. , 2014, “ Spectrally Controlled Thermal Radiation Based on Surface Microstructures for High-Efficiency Solar Thermophotovoltaic System,” Energy Procedia, 57, pp. 517–523. [CrossRef]
Zhao, B. , Wang, L. P. , Shuai, Y. , and Zhang, Z. M. , 2013, “ Thermophotovoltaic Emitters Based on a Two-Dimensional Grating/Thin-Film Nanostructure,” Int. J. Heat Mass Transfer, 67, pp. 637–645. [CrossRef]
Bernardi, M. P. , Dupré, O. , Blandre, E. , Chapuis, P.-O. , Vaillon, R. , and Francoeur, M. , 2015, “ Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-Gap Thermophotovoltaic Power Generators,” Sci. Rep., 5, p. 011626. [CrossRef]
Bright, T. J. , Wang, L. P. , and Zhang, Z. M. , 2014, “ Performance of Near-Field Thermophotovoltaic Cells Enhanced With a Backside Reflector,” ASME J. Heat Transfer, 136(6), p. 062701. [CrossRef]
Tong, J. K. , Hsu, W.-C. , Huang, Y. , Boriskina, S. V. , and Chen, G. , 2015, “ Thin-Film ‘Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep., 5, p. 010661. [CrossRef]
Messina, R. , and Ben-Abdallah, P. , 2013, “ Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion,” Sci. Rep., 3, p. 001383. [CrossRef]
Ilic, O. , Jablan, M. , Joannopoulos, J. D. , Celanovic, I. , and Soljačić, M. , 2012, “ Overcoming the Black Body Limit in Plasmonic and Graphene Near-Field Thermophotovoltaic Systems,” Opt. Express, 20(S3), pp. A366–A384. [CrossRef] [PubMed]
Chang, J.-Y. , Yang, Y. , and Wang, L. P. , 2015, “ Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-Field Thermophotovoltaic Applications,” Int. J. Heat Mass Transfer, 87, pp. 237–247. [CrossRef]
Rodriguez, A. W. , Ilic, O. , Bermel, P. , Celanovic, I. , Joannopoulos, J. D. , Soljačić, M. , and Johnson, S. G. , 2011, “ Frequency-Selective Near-Field Radiative Heat Transfer Between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials,” Phys. Rev. Lett., 107(11), p. 114302. [CrossRef] [PubMed]
Liu, X. L. , and Zhang, Z. M. , 2015, “ Near-Field Thermal Radiation Between Metasurfaces,” ACS Photonics, 2(9), p. 1320. [CrossRef]
Guérout, R. , Lussange, J. , Rosa, F. S. S. , Hugonin, J. P. , Dalvit, D. A. R. , Greffet, J.-J. , Lambrecht, A. , and Reynaud, S. , 2012, “ Enhanced Radiative Heat Transfer Between Nanostructured Gold Plates,” Phys. Rev. B, 85(18), p. 180301. [CrossRef]
Lussange, J. , Guérout, R. , Rosa, F. S. S. , Greffet, J.-J. , Lambrecht, A. , and Reynaud, S. , 2012, “ Radiative Heat Transfer Between Two Dielectric Nanogratings in the Scattering Approach,” Phys. Rev. B, 86(8), p. 085432. [CrossRef]
Liu, X. L. , and Zhang, Z. M. , 2014, “ Graphene-Assisted Near-Field Radiative Heat Transfer Between Corrugated Polar Materials,” Appl. Phys. Lett., 104(25), p. 251911. [CrossRef]
Palik, E. D. , ed., 1998, Handbook of Optical Constants of Solids, Vol. 1, Academic Press, San Diego, CA.
González-Cuevas, J. A. , Refaat, T. F. , Abedin, M. N. , and Elsayed-Ali, H. E. , 2006, “ Modeling of the Temperature-Dependent Spectral Response of In1-xGaxSb Infrared Photodetectors,” Opt. Eng., 45(4), p. 044001. [CrossRef]
Liu, X. L. , and Zhang, Z. M. , 2015, “ Giant Enhancement of Nanoscale Thermal Radiation Based on Hyperbolic Graphene Plasmons,” Appl. Phys. Lett., 107(14), p. 143114. [CrossRef]
Lambrecht, A. , and Marachevsky, V. N. , 2008, “ Casimir Interaction of Dielectric Gratings,” Phys. Rev. Lett., 101(16), p. 160403. [CrossRef] [PubMed]
Ashcroft, N. W. , and Mermin, N. D. , 1976, Solid State Physics, Holt, Rinehart and Winston, New York.
Liu, X. L. , Zhao, B. , and Zhang, Z. M. , 2015, “ Enhanced Near-Field Thermal Radiation and Reduced Casimir Stiction Between Doped-Si Gratings,” Phys. Rev. A, 91(6), p. 062510. [CrossRef]
Joulain, K. , Mulet, J.-P. , Marquier, F. , Carminati, R. , and Greffet, J.-J. , 2005, “ Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field,” Surf. Sci. Rep., 57(3–4), pp. 59–112. [CrossRef]
Watjen, J. I. , Bright, T. J. , Zhang, Z. M. , Muratore, C. , and Voevodin, A. A. , 2013, “ Spectral Radiative Properties of Tungsten Thin Films,” Int. J. Heat Mass Transfer, 61, pp. 106–113. [CrossRef]
Basu, S. , and Zhang, Z. M. , 2009, “ Maximum Energy Transfer in Near-Field Thermal Radiation at Nanometer Distances,” J. Appl. Phys., 105(9), p. 093535. [CrossRef]
Liu, B. , Shi, J. , Liew, K. , and Shen, S. , 2014, “ Near-Field Radiative Heat Transfer for Si Based Metamaterials,” Opt. Commun., 314, pp. 57–65. [CrossRef]
Liu, X. L. , Bright, T. J. , and Zhang, Z. M. , 2014, “ Application Conditions of Effective Medium Theory in Near-Field Radiative Heat Transfer Between Multilayered Metamaterials,” ASME J. Heat Transfer, 136(9), p. 092703. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of the NFTPV device showing the coordinate axes, vacuum gap spacing d, and the geometric grating parameters: period P, height H, and ridge width w. The temperatures of the emitter at T1 and receiver at T2 are specified.

Grahic Jump Location
Fig. 2

Contour plots showing the electrical power output and conversion efficiency versus grating period and height: (a) electrical power output in log scale, where Pel is in (W/m2), for the filling ratio corresponding to the highest power output and (b) conversion efficiency for the filling ratio with the highest efficiency. Note that all calculations are at a gap spacing d = 20 nm.

Grahic Jump Location
Fig. 3

(a) Power output and (b) conversion efficiency for the selected grating and planar tungsten emitters. The default parameters of the selected grating are P = 50 nm, H = 500 nm, and f = 0.8.

Grahic Jump Location
Fig. 4

Parametric study for the performance when a single parameter f, P, or H is varied while the others are fixed to the default values of the selected grating. Effects of (a) filling ratio, (b) grating period, and (c) grating height.

Grahic Jump Location
Fig. 5

Contour plots for energy transmission coefficient at ky = 0 for two cases: (a) plain tungsten without grating and (b) tungsten grating with default parameters. The white dashed line represents the light line.

Grahic Jump Location
Fig. 6

Integrated energy transmission coefficient over kx: (a) plain tungsten without grating and (b) tungsten grating with default parameters

Grahic Jump Location
Fig. 7

Spectral energy transmission coefficient for the grating and planar geometries. The band gap corresponding to 8.4 × 1014 rad/s is shown with a dotted vertical line.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In