0
Research Papers: Combustion and Reactive Flows

WSGG Model Correlations to Compute Nongray Radiation From Carbon Monoxide in Combustion Applications

[+] Author and Article Information
Rogério Brittes

Academic Coordination of Cachoeira do Sul,
Federal University of Santa Maria,
Ernesto Barros Street, 1345,
Cachoeira do Sul 96506-322, RS, Brazil
e-mail: rogerio.silva@ufsm.br

Felipe Roman Centeno, Aline Ziemniczak, Francis. H. R. França

Department of Mechanical Engineering,
Federal University of Rio Grande do Sul,
Sarmento Leite Street, 425,
Porto Alegre 90050-170, RS, Brazil

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received August 19, 2016; final manuscript received November 29, 2016; published online February 1, 2017. Assoc. Editor: Zhixiong Guo.

J. Heat Transfer 139(4), 041202 (Feb 01, 2017) (7 pages) Paper No: HT-16-1526; doi: 10.1115/1.4035394 History: Received August 19, 2016; Revised November 29, 2016

This paper presents correlations for the weighted-sum-of-gray-gases (WSGG) model for carbon monoxide based on HITEMP2010. The correlations are valid for pressure path lengths from 0.0001 atm·m up to 10 atm·m, total pressure in the order of 1.0 atm, and for temperatures ranging from 400 K up to 2500 K. Some test cases embodying nonhomogeneous, nonisothermal conditions are presented, and the results for the WSGG model are compared with the line-by-line (LBL) solutions for CO.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Denison, M. K. , and Webb, B. W. , 1995, “ The Spectral Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media,” ASME J. Heat Transfer, 117(2), pp. 359–365. [CrossRef]
Solovjov, V. P. , and Webb, B. W. , 1998, “ Radiative Transfer Model Parameters for Carbon Monoxide at High Temperature,” Int. Heat Transfer Conf. epub.
Solovjov, V. P. , and Webb, B. W. , 2000, “ SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures,” J. Quant. Spectrosc. Radiat. Transfer, 65(4), pp. 655–672. [CrossRef]
Solovjov, V. P. , Andre, F. , Lemonnier, D. , and Webb, B. W. , 2016, “ The Generalized SLW Model, Eurotherm Conference 105: Computational Thermal Radiation in Participating Media V,” J. Phys.: Conf. Ser., 676, p. 012022.
Solovjov, V. P. , and Webb, B. W. , 2008, “ Multilayer Modeling of Radiative Transfer by SLW and CW Methods in Non-Isothermal Gaseous Media,” J. Quant. Spectrosc. Radiat. Transfer, 109(2), pp. 245–257. [CrossRef]
Solovjov, V. P. , and Webb, B. W. , 2010, “ Application of CW Local Correction Approach to SLW Modeling of Radiative Transfer in Non-Isothermal Gaseous Media,” ASME Paper No. IMECE2002-33886.
Solovjov, V. P. , and Webb, B. W. , 2011, “ Global Spectral Methods in Gas Radiation: The Exact Limit of the SLW Model and Its Relationship to the ADF and FSK Methods,” ASME J. Heat Transfer, 133(4), p. 042701. [CrossRef]
Solovjov, V. P. , Lemonnier, D. , and Webb, B. W. , 2011, “ SLW-1 Modeling of Radiative Heat Transfer in Nonisothermal Nonhomogeneous Gas Mixtures With Soot,” ASME J. Heat Transfer, 133(10), p. 102701. [CrossRef]
Solovjov, V. P. , Andre, F. , Lemonnier, D. , Webb, B. W. , and Vladimir, P. S. , 2016, “ The Rank Correlated SLW Model of Gas Radiation in Non-Uniform Media,” 8th International Symposium on Radiative Transfer, RAD-16-GR4, Cappadocia, Turkey, June 6–10.
Mazumder, S. , and Modest, M. F. , 2002, “ Application of the Full Spectrum Correlated-k Distribution Approach to Modeling Non-Gray Radiation in Combustion Gases,” Combust. Flame, 129(4), pp. 416–438. [CrossRef]
Modest, M. F. , and Zhang, H. , 2003, “ Full-Spectrum k-Distribution Correlations for Carbon Dioxide Mixtures,” J. Thermophys. Heat Transfer, 17(2), pp. 259–263. [CrossRef]
Modest, M. F. , 2003, “ Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated vs. Scaling Approximation,” J. Quant. Spectrosc. Radiat. Transfer, 76(1), pp. 69–83. [CrossRef]
Solovjov, V. P. , and Webb, B. W. , 2002, “ Local-Spectrum Correlated Model for Radiative Transfer in Non-Uniform Gas Media,” J. Quant. Spectrosc. Radiat. Transfer, 73(2–5), pp. 361–373. [CrossRef]
Galarça, M. M. , Mossi, A. , and França, F. H. R. , 2011, “ Modification of the Cumulative Wavenumber Method to Compute the Radiative Heat Flux in Non-Uniform Media,” J. Quant. Spectrosc. Radiat. Transfer, 112(3), pp. 384–393. [CrossRef]
Solovjov, V. P. , Lemonnier, D. , and Webb, B. W. , 2013, “ Efficient Cumulative Wavenumber Model of Radiative Transfer in Gaseous Media Bounded by Non-Gray Walls,” J. Quant. Spectrosc. Radiat. Transfer, 128, pp. 2–9. [CrossRef]
Song, T. H. , and Viskanta, R. , 1986, “ Development of Application of a Spectral-Group Model to Radiative Heat Transfer,” ASME Paper No. 86-WA/HT-36.
Dorigon, L. J. , Duciak, G. , Brittes, R. , Cassol, F. , Galarça, M. , and França, F. H. R. , 2013, “ WSGG Correlations Based on HITEMP2010 for Computation of Thermal Radiation in Non-Isothermal, Non-Homogeneous H2O/CO2 Mixtures,” Int. J. Heat Mass Transfer, 64, pp. 863–873. [CrossRef]
Cassol, F. , Brittes, R. , França, F. H. R. , and Ezekoye, O. A. , 2014, “ Application of the Weighted-Sum-of-Gray-Gases Model for Media Composed of Arbitrary Concentrations of H2O, CO2 and Soot,” Int. J. Heat Mass Transfer, 79, pp. 796–806. [CrossRef]
Centeno, F. R. , Brittes, R. , França, F. H. R. , and Ezekoye, O. A. , 2015, “ Evaluation of Gas Radiation Heat Transfer in a 2D Axisymmetric Geometry Using the Line-by-Line Integration and WSGG Models,” J. Quant. Spectrosc. Radiat. Transfer, 156, pp. 1–11. [CrossRef]
Centeno, F. R. , Brittes, R. , França, F. H. R. , and da Silva, C. V. , 2016, “ Application of the WSGG Model for the Calculation of Gas–Soot Radiation in a Turbulent Non-Premixed Methane–Air Flame Inside a Cylindrical Combustion Chamber,” Int. J. Heat Mass Transfer, 93, pp. 742–753. [CrossRef]
Johansson, R. , Leckner, B. , Andersson, K. , and Johnsson, F. , 2011, “ Account for Variations in the H2O to CO2 Molar Ratio When Modelling Gaseous Radiative Heat Transfer With the Weighted-Sum-of-Grey-Gases Model,” Combust. Flame, 158(5), pp. 893–901. [CrossRef]
Rehfeldt, S. , Kuhr, C. , Ehmann, M. , and Bergins, C. , 2011, “ Modeling of Radiative Properties of an Oxyfuel Atmosphere With a Weighted Sum of Gray Gases for Variable Carbon Dioxide and Water Vapor Concentrations,” Energy Procedia, 4, pp. 980–987. [CrossRef]
Kangwanpongpan, T. , França, F. H. R. , da Silva, R. C. , Schneider, P. S. , and Krautz, H. J. , 2012, “ New Correlations for the Weighted-Sum-of-Gray-Gases Model in Oxy-Fuel Conditions Based on HITEMP 2010 Database,” Int. J. Heat Mass Transfer, 55(25–26), pp. 7419–7433. [CrossRef]
Bordbar, M. H. , Węcel, G. , and Hyppänen, T. , 2014, “ A Line by Line Based Weighted Sum of Gray Gases Model for Inhomogeneous CO2–H2O Mixture in Oxy-Fired Combustion,” Combust. Flame, 161(9), pp. 2435–2445. [CrossRef]
Guo, J. , Li, X. , Huang, X. , Liu, Z. , and Zheng, C. , 2015, “ A Full Spectrum k-Distribution Based Weighted-Sum-of-Gray-Gases Model for Oxy-Fuel Combustion,” Int. J. Heat Mass Transfer, 90, pp. 218–226. [CrossRef]
Brittes, R. , Cassol, F. , Centeno, F. R. , and França, F. H. R. , 2015, “ A Novel WSGG Model Based on Weighted Absorption-Emission Coefficients,” ASME Paper No. IMECE2015-52946.
Rothman, L. S. , Gordon, I. E. , Barber, R. J. , Dothe, H. , Gamache, R. R. , Goldman, A. , Perevalov, V. I. , Tashkun, S. A. , and Tennyson, J. , 2010, “ HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer, 111(15), pp. 2139–2150. [CrossRef]
Siegel, R. , and Howell, J. R. , 2002, Thermal Radiation Heat Transfer, 4th ed., Taylor & Francis, New York.
Wang, A. , and Modest, M. F. , 2004, “ Importance of Combined Lorentz-Doppler Broadening in High-Temperature Radiative Heat Transfer Applications,” ASME J. Heat Transfer, 126(5), pp. 858–861. [CrossRef]
Rothman, L. S. , Rinsland, C. P. , Goldman, A. , Massie, S. T. , Edwards, D. P. , Flaud, J.-M. , Perrin, A. , Camy-Peyret, C. , Dana, V. , Mandin, J.-Y. , Schroeder, J. , Mccann, A. , Gamache, R. R. , Wattson, R. B. , Yoshino, K. K. , Chance, V. , Jucks, K. W. , Brown, L. R. , Nemtchinov, V. , and Varanasi, P. , 1998, “ The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer, 60(5), pp. 665–710. [CrossRef]
Rivière, P. , and Soufiani, A. , 2012, “ Updated Band Model Parameters for H2O, CO2, CH4, and CO Radiation at High Temperature,” Int. J. Heat Mass Transfer, 55(13–14), pp. 3349–3358. [CrossRef]
Pearson, J. T. , Webb, B. W. , Solovjov, V. P. , and Ma, J. , 2014, “ Efficient Representation of the Absorption Line Blackbody Distribution Function for H2O, CO2, and CO at Variable Temperature, Mole Fraction, and Total Pressure,” J. Quant. Spectrosc. Radiat. Transfer, 138, pp. 82–96. [CrossRef]
Chu, H. , Liu, F. , and Zhou, H. , 2011, “ Calculations of Gas Thermal Radiation Transfer in One-Dimensional Planar Enclosure Using LBL and SNB Models,” Int. J. Heat Mass Transfer, 54(21–22), pp. 4736–4745. [CrossRef]
Marquardt, D. W. , 1963, “ An Algorithm for the Least-Squares Estimation of Nonlinear Parameters,” SIAM J. Appl. Math, 11(2), pp. 431–441. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Absorption cross section of CO for T = 1500 K and pa = 0.5 atm, considering different Δηmax. In the figure, the absorption cross sections for Δηmax = 2000 cm−1 and Δηmax = 2400 cm−1 are coincident.

Grahic Jump Location
Fig. 2

Comparison of the total emittances of CO computed from WSGG model and from LBL integration

Grahic Jump Location
Fig. 3

Dependence of the total emittance of CO for different values of the partial pressure, keeping a constant value of paL = 0.1 atm·m

Grahic Jump Location
Fig. 4

Temperature and partial pressure profiles: (a) case 1, (b) case 2, and (c) case 3

Grahic Jump Location
Fig. 5

Solution for case 1: (a) radiative heat flux and (b) radiative heat source

Grahic Jump Location
Fig. 6

Solution for case 2: (a) radiative heat flux and (b) radiative heat source

Grahic Jump Location
Fig. 7

Solution for case 3: (a) radiative heat flux and (b) radiative heat source

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In