Research Papers: Combustion and Reactive Flows

Numerical Study of Inlet Turbulators Effect on the Thermal Characteristics of a Jet Propulsion-Fueled Combustor and Its Hazardous Pollutants Emission

[+] Author and Article Information
Masoud Darbandi

Department of Aerospace Engineering,
Center of Excellence in Aerospace Systems,
Institute for Nanoscience and Nanotechnology,
Sharif University of Technology,
P. O. Box 11365-8639,
Tehran 14588-89694, Iran
e-mail: darbandi@sharif.edu

Majid Ghafourizadeh

Department of Aerospace Engineering,
Center of Excellence in Aerospace Systems,
Sharif University of Technology,
P. O. Box 11365-8639,
Tehran 14588-89694, Iran

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 10, 2016; final manuscript received December 6, 2016; published online February 28, 2017. Assoc. Editor: Zhuomin Zhang.

J. Heat Transfer 139(6), 061201 (Feb 28, 2017) (12 pages) Paper No: HT-16-1375; doi: 10.1115/1.4035443 History: Received June 10, 2016; Revised December 06, 2016

This work numerically studies the effects of inlet air and fuel turbulators on the thermal behavior of a combustor burning the jet propulsion (JP) (kerosene-surrogate) fuel and its resulting pollutants emission including the nanoparticulate soot aerosols and aromatic compounds. To model the soot formation, the method employs a semi-empirical two-equation model, in which the transport equations for soot mass fraction and soot number density are solved considering soot nanoparticles evolutionary process. The soot nucleation is described using the phenyl route in which the soot is formed from the polycyclic aromatic hydrocarbons. Incorporating a detailed chemical mechanism described by 200 species and 6907 elementary reactions, the flamelets and their lookup table library are precomputed and used in the context of steady laminar flamelet model (SLFM). Thus, the current finite-volume method solves the transport equations for the mean mixture fraction and its variance and considers the chemistry–turbulence interaction using the presumed-shape probability density functions (PDFs). To validate the utilized models, a benchmark combustor is first simulated, and the results are compared with the measurements. Second, the numerical method is used to investigate the effects of embedding different inflow turbulators on the resulting flame structure and the combustor pollutants emission. The chosen turbulators produce mild to severe turbulence intensity (TI) effects at the air and fuel inlets. Generally, the results of current study indicate that the use of suitable turbulators can considerably affect the thermal behavior of a JP-fueled combustor. Additionally, it also reduces the combustor polycyclic aromatic hydrocarbon (PAH) pollutants emission.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Kennedy, L. A. , and Scaccia, C. , 1974, “ Modeling of Combustion Chambers for Predicting Pollutant Concentrations,” ASME J. Heat Transfer, 96(3), pp. 405–409. [CrossRef]
Said, N. M. , Mhiri, H. , Golli, S. E. , Palec, G. L. , and Bournot, P. , 2003, “ Three-Dimensional Numerical Calculations of a Jet in an External Cross Flow: Application to Pollutant Dispersion,” ASME J. Heat Transfer, 125(3), pp. 510–522. [CrossRef]
Zsély, I. G. , Zádor, J. , and Turányi, T. , 2005, “ Uncertainty Analysis of Updated Hydrogen and Carbon Monoxide Oxidation Mechanisms,” Proc. Combust. Inst., 30(1), pp. 1273–1281. [CrossRef]
Chyu, M. K. , Siw, S. C. , Karaivanov, V. G. , Slaughter, W. S. , and Alvin, M. A. , 2009, “ Aerothermal Challenges in Syngas, Hydrogen-Fired, and Oxyfuel Turbines—Part II: Effects of Internal Heat Transfer,” ASME J. Therm. Sci. Eng. Appl., 1(1), p. 011003. [CrossRef]
Jiang, L. , 2013, “ A Critical Evaluation of Turbulence Modeling in a Model Combustor,” J. Therm. Sci. Eng. Applications, 5(3), p. 031002. [CrossRef]
Xu, H. , Smoot, L. D. , and Hill, S. C. , 1999, “ Computational Model for NOx Reduction by Advanced Reburning,” Energy Fuels, 13(2), pp. 411–420. [CrossRef]
Falcitelli, M. , Pasini, S. , and Tognotti, L. , 2002, “ Modelling Practical Combustion Systems and Predicting NOx Emissions With an Integrated CFD Based Approach,” Comput. Chem. Eng., 26(9), pp. 1171–1183. [CrossRef]
Holdeman, J. D. , and Chang, C. T. , 2007, “ The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section,” ASME J. Fluids Eng., 129(11), pp. 1460–1467. [CrossRef]
Yang, B.-J. , Mao, S. , Altin, O. , Feng, Z.-G. , and Michaelides, E. E. , 2011, “ Condensation Analysis of Exhaust Gas Recirculation System for Heavy-Duty Trucks,” ASME J. Therm. Sci. Eng. Appl., 3(4), p. 041007. [CrossRef]
Zhou, H. , Yang, Y. , Liu, H. , and Hang, Q. , 2014, “ Numerical Simulation of the Combustion Characteristics of a Low NOx Swirl Burner: Influence of the Primary Air Pipe,” Fuel, 130, pp. 168–176. [CrossRef]
Funke, H. H. W. , Keinz, J. , Kusterer, K. , Ayed, A. H. , Kazari, M. , Kitajima, J. , Horikawa, A. , and Okada, K. , 2016, “ Experimental and Numerical Study on Optimizing the Dry Low NOx Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications,” ASME J. Therm. Sci. Eng. Appl., 9(2), p. 02100. [CrossRef]
Leung, K. M. , Lindstedt, R. P. , and Jones, W. P. , 1991, “ A Simplified Reaction Mechanism for Soot Formation in Nonpremixed Flames,” Combust. Flame, 87(3–4), pp. 289–305. [CrossRef]
Kennedy, I. M. , Yam, C. , Rapp, D. C. , and Santoro, R. J. , 1996, “ Modeling and Measurements of Soot and Species in a Laminar Diffusion Flame,” Combust. Flame, 107(4), pp. 368–382. [CrossRef]
Mueller, M. E. , Blanquart, G. , and Pitsch, H. , 2009, “ A Joint Volume-Surface Model of Soot Aggregation With the Method of Moments,” Proc. Combust. Inst., 32(1), pp. 785–792. [CrossRef]
Mueller, M. E. , Blanquart, G. , and Pitsch, H. , 2011, “ Modeling the Oxidation-Induced Fragmentation of Soot Aggregates in Laminar Flame,” Proc. Combust. Inst., 33(1), pp. 667–674. [CrossRef]
Xuan, Y. , Blanquart, G. , and Mueller, M. E. , 2014, “ Modeling Curvature Effects in Diffusion Flames Using a Laminar Flamelet Model,” Combust. Flame, 161(5), pp. 1294–1309. [CrossRef]
Brookes, S. J. , and Moss, J. B. , 1999, “ Predictions of Soot and Thermal Radiation Properties in Confined Turbulent Jet Diffusion Flames,” Combust. Flame, 116(4), pp. 486–503. [CrossRef]
Kronenburg, A. , Bilger, R. W. , and Kent, J. H. , 2000, “ Modeling Soot Formation in Turbulent Methane-Air Jet Diffusion Flames,” Combust. Flame, 121(1–2), pp. 24–40. [CrossRef]
Mueller, M. E. , and Pitsch, H. , 2012, “ LES Model for Sooting Turbulent Nonpremixed Flame,” Combust. Flame, 159(6), pp. 2166–2180. [CrossRef]
Donde, P. , Raman, V. , Mueller, M. E. , and Pitsch, H. , 2013, “ LES/PDF Based Modeling of Soot-Turbulence Interactions in Turbulent Flame,” Proc. Combust. Inst., 34(1), pp. 1183–1192. [CrossRef]
Mueller, M. E. , Chan, Q. N. , Qamar, N. H. , Dally, B. B. , Pitsch, H. , Alwahabi, Z. T. , and Nathan, G. J. , 2013, “ Experimental and Computational Study of Soot Evolution in a Turbulent Nonpremixed Bluff Body Ethylene Flame,” Combust. Flame, 160(7), pp. 1298–1309. [CrossRef]
Mueller, M. E. , and Raman, V. , 2014, “ Effects of Turbulent Combustion Modeling Errors on Soot Evolution in a Turbulent Nonpremixed Jet Flame,” Combust. Flame, 161(7), pp. 1842–1848. [CrossRef]
Reddy, B. M. , De, A. , and Yadav, R. , 2014, “ Numerical Investigation of Soot Formation in Turbulent Diffusion Flame With Strong Turbulence-Chemistry Interaction,” ASME J. Therm. Sci. Eng. Appl., 8(1), p. 011001. [CrossRef]
Song, Y.-N. , and Zhong, B.-J. , 2008, “ Modeling of Soot and Polycyclic Aromatic Hydrocarbons in Diesel Diffusion Combustion,” Chem. Eng. Technol., 31(10), pp. 1418–1423. [CrossRef]
Marchal, C. , Delfau, J.-L. , Vovelle, C. , Moréac, G. , Mounaïm-Rousselle, C. , and Mauss, F. , 2009, “ Modelling of Aromatics and Soot Formation From Large Fuel Molecules,” Proc. Combust. Inst., 32(1), pp. 753–759. [CrossRef]
Pang, K. M. , Ng, H. K. , and Gan, S. , 2011, “ Development of an Integrated Reduced Fuel Oxidation and Soot Precursor Formation Mechanism for CFD Simulations of Diesel Combustion,” Fuel, 90(9), pp. 2902–2914. [CrossRef]
Wen, Z. , Yun, S. , Thomson, M. J. , and Lightstone, M. F. , 2003, “ Modeling Soot Formation in Turbulent Kerosene/Air Jet Diffusion Flames,” Combust. Flame, 135(3), pp. 323–340. [CrossRef]
Katta, V. R. , Meyer, T. R. , Montgomery, C. , and Roquemore, W. M. , 2005, “ Studies on Soot Formation in a Model Gas-Turbine Combustor,” AIAA Paper No. 2005-3777.
Sadiki, A. , Chrigui, M. , Janicka, J. , and Maneshkarimi, M. R. , 2005, “ Modeling and Simulation of Effects of Turbulence on Vaporization, Mixing and Combustion of Liquid-Fuel Sprays,” Flow Turbul. Combust., 75(1–4), pp. 105–130. [CrossRef]
Kim, T. , Song, J. , and Park, S. , 2015, “ Effects of Turbulence Enhancement on Combustion Process Using a Double Injection Strategy in Direct-Injection Spark-Ignition (DISI) Gasoline Engines,” Int. J. Heat Fluid Flow, 56, pp. 124–136. [CrossRef]
Sornek, R. J. , Dobashi, R. , and Hirano, T. , 2000, “ Effect of Turbulence on Vaporization, Mixing, and Combustion of Liquid-Fuel Sprays,” Combust. Flame, 120(4), pp. 479–491. [CrossRef]
Leuckel, W. , Nastoll, W. , and Zarzalis, N. , 1989, “ Influence of Turbulence on Transient Premixed Flame Propagation Inside Closed Vessels,” Chem. Eng. Technol., 12(1), pp. 226–233. [CrossRef]
Darbandi, M. , Ghafourizadeh, M. , and Jafari, S. , 2013, “ Simulation of Soot Nanoparticles Formation and Oxidation in a Turbulent Non-Premixed Methane-Air Flame at Elevated Pressure,” Nanotechnology (IEEE-NANO), 13th IEEE International Conference on Nanotechnology, IEEE, Bejing, China, Aug. 5–9, pp. 608–613.
Darbandi, M. , Ghafourizadeh, M. , and Schneider, G. E. , 2014, “ Extending a Numerical Procedure to Simulate the Micro/Nanoscale Soot Formation in Ethylene-Air Turbulent Flame Using Acetylene-Route Nucleation,” AIAA Paper No. 2014-2385.
Darbandi, M. , Ghafourizadeh, M. , and Schneider, G. E. , 2015, “ Numerical Study on the Effects of Fuel Injector Cone-Angle on Soot Nano-Particles, CO, and CO2 Pollutions in a Combustion Chamber Burning Kerosene,” AIAA Paper No. 2015-3728.
Darbandi, M. , and Ghafourizadeh, M. , 2015, “ Solving Turbulent Diffusion Flame in Cylindrical Frame Applying an Improved Advective Kinetics Scheme,” Theor. Comput. Fluid Dyn. 29(5–6), pp. 413–431. [CrossRef]
Darbandi, M. , and Ghafourizadeh, M. , 2016, “ A New Bi-Implicit Finite Volume Element Method for Coupled Systems of Turbulent Flow and Aerosol-Combustion Dynamics,” J. Coupled Syst. Multiscale Dyn., 4(1), pp. 43–59. [CrossRef]
Jones, W. P. , and Launder, B. E. , 1972, “ The Prediction of Laminarization With a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transfer, 15(2), pp. 301–314. [CrossRef]
Kent, J. H. , and Honnery, D. , 1987, “ Soot and Mixture Fraction in Turbulent Diffusion Flames,” Combust. Sci. Technol., 54(1–6), pp. 383–397. [CrossRef]
Peters, N. , 1984, “ Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,” Prog. Energy Combust. Sci., 10(3), pp. 319–339. [CrossRef]
Jeng, S.-M. , and Faeth, M. , 1984, “ Species Concentrations and Turbulence Properties in Buoyant Methane Diffusion Flames,” ASME J. Heat Transfer, 106(4), pp. 721–727. [CrossRef]
Gore, J. P. , and Faeth, G. M. , 1988, “ Structure and Radiation Properties of Luminous Turbulent Acetylene/Air Diffusion Flames,” ASME J. Heat Transfer, 110(1), pp. 173–181. [CrossRef]
Kounalakis, M. E. , Gore, J. P. , and Faeth, G. M. , 1989, “ Mean and Fluctuating Radiation Properties of Nonpremixed Turbulent Carbon Monoxide/Air Flames,” ASME J. Heat Transfer, 111(4), pp. 1021–1030. [CrossRef]
Emery, P. , Maroteaux, F. , and Sorine, M. , 2003, “ Modeling of Combustion in Gasoline Direct Injection Engines for the Optimization of Engine Management System Through Reduction of Three-Dimensional Models to (n × One-Dimensional) Models,” ASME J. Fluids Eng., 125(3), pp. 520–532. [CrossRef]
Alfaro-Ayala, J. A. , Gallegos-Muñoz, A. , Riesco-Ávila, J. M. , Flores-López, M. , Campos-Amezcua, A. , and Mani-González, A. G. N. , 2011, “ Analysis of the Flow in the Combustor-Transition Piece Considering the Variation in the Fuel Composition,” ASME J. Therm. Sci. Eng. Appl., 3(2), p. 021003. [CrossRef]
Ranzi, E. , Frassoldati, A. , Granata, S. , and Faravelli, T. , 2005, “ Wide-Range Kinetic Modeling Study of the Pyrolysis, Partial Oxidation, and Combustion of Heavy n-Alkanes,” Ind. Eng. Chem. Res., 44(14), pp. 5170–5183. [CrossRef]
Sozer, E. , Hassan, E. A. , Yun, S. , Thakur, S. , Wright, J. , Ihme, M. , and Shyy, W. , 2010, “ Turbulence-Chemistry Interaction and Heat Transfer Modeling of H2/O2 Gaseous Injector Flows,” AIAA Paper No. 2010-1525.
Hall, R. J. , Smooke, M. D. , and Colket, M. B. , 1997, “ Predictions of Soot Dynamics in Opposed Jet Diffusion Flames,” Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, I. Glassman , R. F. Sawyer , and F. L. Dryer , eds., Gordon and Breach Science Publishers, Amsterdam, Netherlands, pp. 189–230.
Hall, R. J. , 1988, “ Computation of the Radiative Power Loss in a Sooting Diffusion Flame,” Appl. Opt., 27(5), pp. 809–811. [CrossRef] [PubMed]
Barlow, R. S. , Karpetis, A. N. , Frank, J. H. , and Chen, J.-Y. , 2001, “ Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames,” Combust. Flame, 127(3), pp. 2102–2118. [CrossRef]
Young, K. J. , Stewart, C. D. , and Moss, J. B. , 1994, “ Soot Formation in Turbulent Nonpremixed Kerosine-Air Flames Burning at Elevated Pressure: Experimental Measurement,” Proc. Combust. Inst., 25(1), pp. 609–617. [CrossRef]
Schneider, G. E. , and Raw, M. J. , 1987, “ Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables—1: Computational Procedure,” Numer. Heat Transfer, 11(4), pp. 363–390.
Darbandi, M. , and Schneider, G. E. , 1997, “ Momentum Variable Procedure for Solving Compressible and Incompressible Flows,” AIAA J., 35(12), pp. 1801–1805. [CrossRef]
Darbandi, M. , and Schneider, G. E. , 1998, “ Analogy-Based Method for Solving Compressible and Incompressible Flows,” J. Thermophys. Heat Transfer, 12(2), pp. 239–247. [CrossRef]
Darbandi, M. , and Schneider, G. E. , 2003, “ Thermobuoyancy Treatment for Electronic Packaging Using an Improved Advection Scheme,” ASME J. Electron. Packag., 125(2), pp. 244–250. [CrossRef]
Darbandi, M. , and Vakilipour, S. , 2008, “ Developing Implicit Pressure-Weighted Upwinding Scheme to Calculate Steady and Unsteady Flows on Unstructured Grids,” Int. J. Numer. Methods Fluids, 56(2), pp. 115–141. [CrossRef]
Darbandi, M. , Vakili, S. , and Schneider, G. E. , 2008, “ Efficient Multilevel Restriction-Prolongation Expressions for Hybrid Finite Volume Element Method,” Int. J. Comput. Fluid Dyn., 22(1–2), pp. 29–38. [CrossRef]
Naderi, A. , Darbandi, M. , and Taeibi-Rahni, M. , 2010, “ Developing a Unified FVE-ALE Approach to Solve Unsteady Fluid Flow With Moving Boundaries,” Int. J. Numer. Methods Fluids, 63(1), pp. 40–68.
Darbandi, M. , and Ghafourizadeh, M. , 2014, “ Extending a Hybrid Finite-Volume-Element Method to Solve Laminar Diffusive Flame,” Numer. Heat Transfer, Part B, 66(2), pp. 181–210. [CrossRef]
Wang, H. , 2011, “ Formation of Nascent Soot and Other Condensed-Phase Materials in Flames,” Proc. Combust. Inst., 33(1), pp. 41–67. [CrossRef]
Roy, S. P. , and Haworth, D. C. , 2016, “ A Systematic Comparison of Detailed Soot Models and Gas-Phase Chemical Mechanisms in Laminar Premixed Flames,” Combust. Sci. Technol., 188(7), pp. 1021–1053. [CrossRef]
Camp, T. R. , and Shin, H.-W. , 1995, “ Turbulence Intensity and Length Scale Measurements in Multistage Compressors,” ASME J. Turbomach., 117(1), pp. 38–46. [CrossRef]
Lengani, D. , Paradiso, B. , and Marn, A. , 2012, “ A Method for the Determination of Turbulence Intensity by Means of a Fast Response Pressure Probe and Its Application in a LP Turbine,” J. Therm. Sci., 21(1), pp. 21–31. [CrossRef]


Grahic Jump Location
Fig. 1

The geometry of current combustor [51]

Grahic Jump Location
Fig. 2

Four typical neighboring elements are broken into 16 subquadrilaterals to construct one full finite volume

Grahic Jump Location
Fig. 3

The effects of mesh refinements (a) and turbulence model choices (b) on a number of parameter distributions along the flame centerline and comparisons with the experimental data of Young et al. [51] and numerical results of Wen et al. [27]

Grahic Jump Location
Fig. 4

Contours of turbulence intensity (TI) and temperature (T) inside the combustor embedded with weak (3%) (bottom-half) and strong (20%) (top-half) inlet turbulator influences

Grahic Jump Location
Fig. 5

The temperature (left) and soot volume fraction (right) variations along the combustor centerline using various turbulator influences at the inlets of combustor

Grahic Jump Location
Fig. 6

Contours of soot volume fraction (SVF) and soot particle diameter inside the combustor embedded with weak (3%) (bottom-half) and strong (20%) (top-half) inlet turbulator influences

Grahic Jump Location
Fig. 7

Contours of different aromatic compound mass fractions inside the combustor embedded with weak (3%) (bottom-half) and strong (20%) (top-half) inlet turbulator influences

Grahic Jump Location
Fig. 8

The mass fraction distributions of aromatic compounds along the combustor centerline using various turbulator influences at the inlets of combustor

Grahic Jump Location
Fig. 9

The effects of embedding inlet turbulators with various turbulence influences on the temperature variation along the combustor wall




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In