Griebel,
M.
, and
Schweitzer,
M. A.
, 2000, “
A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs,” SIAM J. Sci. Comput.,
22(3), pp. 853–890.

[CrossRef]
Gingold,
R. A.
, and
Monaghan,
J. J.
, 1977, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars,” Mon. Not. R. Astron. Soc.,
181(3), pp. 375–389.

[CrossRef]
Lucy,
L. B.
, 1977, “
A Numerical Approach to the Testing of the Fission Hypothesis,” Astron. J.,
82, pp. 1013–1024.

[CrossRef]
Nayroles,
B.
,
Touzot,
G.
, and
Villon,
P.
, 1992, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,” Comput. Mech.,
10(5), pp. 307–318.

[CrossRef]
Belytschko,
T.
,
Lu,
Y. Y.
, and
Gu,
L.
, 1994, “
Element-Free Galerkin Method,” Int. J. Numer. Methods Eng.,
37(2), pp. 229–256.

[CrossRef]
Liu,
W. K.
,
Jun,
S.
, and
Zhang,
Y. F.
, 1995, “
Reproducing Kernel Particle Methods,” Int. J. Numer. Methods Fluids,
20(8–9), pp. 1081–1106.

[CrossRef]
Atluri,
S. N.
, and
Zhu,
T.
, 1998, “
A New Meshless Local Petrov–Galerkin (MLPG) Approach in Computational Mechanics,” Comput. Mech.,
22(2), pp. 117–127.

[CrossRef]
Wang,
H.
,
Qin,
Q. H.
, and
Kang,
Y. L.
, 2006, “
A Meshless Model for Transient Heat Conduction in Functionally Graded Materials,” Comput. Mech.,
38(1), pp. 51–60.

[CrossRef]
Wu,
X. H.
,
Shen,
S. P.
, and
Tao,
W. Q.
, 2007, “
Meshless Local Petrov–Galerkin Collocation Method for Two-Dimensional Heat Conduction Problems,” CMES,
22(1), pp. 65–76.

Vishwakarma,
V.
,
Das,
A. K.
, and
Das,
P. K.
, 2011, “
Steady State Conduction Through 2D Irregular Bodies by Smoothed Particle Hydrodynamics,” Int. J. Heat Mass Transfer,
54(1–3), pp. 314–325.

[CrossRef]
Soleimani,
S.
,
Jalaal,
M.
,
Bararnia,
H.
,
Ghasemi,
E.
,
Ganji,
D. D.
, and
Mohammadi,
F.
, 2010, “
Local RBF-DQ Method for Two-Dimensional Transient Heat Conduction Problem,” Int. Commun. Heat Mass Transfer,
37(9), pp. 1411–1418.

[CrossRef]
Chen,
L.
, and
Liew,
K. M.
, 2011, “
A Local Petrov–Galerkin Approach With Moving Kriging Interpolation for Solving Transient Heat Conduction Problems,” Comput. Mech.,
47(4), pp. 455–467.

[CrossRef]
Li,
Q. H.
,
Chen,
S. S.
, and
Kou,
G. X.
, 2011, “
Transient Heat Conduction Analysis Using the MLPG Method and Modified Precise Time Step Integration Method,” J. Comput. Phys.,
230(7), pp. 2736–2750.

[CrossRef]
Varanasi,
C.
,
Murthy,
J. Y.
, and
Mathur,
S.
, 2010, “
A Meshless Finite Difference Method for Conjugate Heat Conduction Problems,” ASME J. Heat Transfer,
132(8), p. 081303.

[CrossRef]
Pepper,
D. W.
,
Wang,
X.
, and
Carrington,
D. B.
, 2013, “
A Meshless Method for Modelling Convective Heat Transfer,” ASME J. Heat Transfer,
135(1), p. 011003.

[CrossRef]
Divo,
E.
, and
Kassab,
A. J.
, 2007, “
An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer,” ASME J. Heat Transfer,
129(2), pp. 124–136.

[CrossRef]
Singh,
A.
,
Singh,
I. V.
, and
Prakash,
R.
, 2007, “
Meshless Element Free Galerkin Method for Unsteady Nonlinear Heat Transfer Problems,” Int. J. Heat Mass Transfer,
50(5–6), pp. 1212–1219.

[CrossRef]
Chantasiriwan,
S.
, 2007, “
Multiquadric Collocation Method for Time-Dependent Heat Conduction Problems With Temperature-Dependent Thermal Properties,” ASME J. Heat Transfer,
129(2), pp. 109–113.

[CrossRef]
Sladek,
J.
,
Sladek,
V.
,
Tan,
C. L.
, and
Atluri,
S. N.
, 2008, “
Analysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method,” CMES,
32(3), pp. 161–174.

Vishwakarma,
V.
,
Das,
A. K.
, and
Das,
P. K.
, 2011, “
Analysis of Non-Fourier Heat Conduction Using Smoothed Particle Hydrodynamics,” Appl. Therm. Eng.,
31(14–15), pp. 2963–2970.

[CrossRef]
Sikarudi,
M. A. E.
, and
Nikseresht,
A. H.
, 2016, “
Neumann and Robin Boundary Conditions for Heat Conduction Modeling Using Smoothed Particle Hydrodynamics,” Comput. Phys. Commun.,
198, pp. 1–11.

[CrossRef]
Zhang,
X.
,
Zhang,
P.
, and
Zhang,
L.
, 2013, “
An Improved Meshless Method With Almost Interpolation Property for Isotropic Heat Conduction Problems,” Eng. Anal. Boundary Elem.,
37(5), pp. 850–859.

[CrossRef]
Hidayat,
M. I. P.
,
Wahjoedi,
B. A.
,
Parman,
S.
, and
Yusoff,
P. S. M. M.
, 2014, “
Meshless Local B-Spline-FD Method and Its Application for 2D Heat Conduction Problems With Spatially Varying Thermal Conductivity,” Appl. Math. Comput.,
242, pp. 236–254.

Sun,
Y. S.
, and
Li,
B. W.
, 2010, “
Spectral Collocation Method for Transient Combined Radiation and Conduction in an Anisotropic Scattering Slab With Graded Index,” ASME J. Heat Transfer,
132(5), p. 052701.

[CrossRef]
Ma,
J.
,
Sun,
Y. S.
, and
Li,
B. W.
, 2014, “
Completely Spectral Collocation Solution of Radiative Heat Transfer in an Anisotropic Scattering Slab With a Graded Index Medium,” ASME J. Heat Transfer,
136(1), p. 012701.

[CrossRef]
Liu,
G. R.
, 2009, Meshfree Methods: Moving Beyond the Finite Element Method, 2nd ed.,
CRC Press,
Boca Raton, FL.

Bornemann,
P. B.
, and
Cirak,
F.
, 2013, “
A Subdivision-Based Implementation of the Hierarchical b-Spline Finite Element Method,” Comput. Methods Appl. Mech. Eng.,
253, pp. 584–598.

[CrossRef]
Kansa,
E. J.
, 1990, “
Multiquadric—A Scattered Data Approximation Scheme With Applications to Computational Fluid Dynamics II,” Comput. Math. Appl.,
19(8–9), pp. 147–161.

[CrossRef]
Cooper,
K. D.
, 1993, “
Domain-Imbedding Alternating Direction Method for Linear Elliptic Equations on Irregular Regions Using Collocation,” Numer. Methods Partial Differ. Equations,
9(1), pp. 93–106.

[CrossRef]
Sun,
W. W.
,
Wu,
J. M.
, and
Zhang,
X. P.
, 2007, “
Nonconforming Spline Collocation Methods in Irregular Domains,” Numer. Methods Partial Differ. Equations,
23(6), pp. 1509–1529.

[CrossRef]
Kundu,
B.
, and
Das,
P. K.
, 2005, “
Optimum Profile of Thin Fins With Volumetric Heat Generation: A Unified Approach,” ASME J. Heat Transfer,
127(8), pp. 945–948.

[CrossRef]
Bartels,
R. H.
,
Beatty,
J. C.
, and
Barsky,
B. A.
, 1987, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling,
Morgan Kaufmann Publishers,
San Mateo, CA.

de Boor,
C.
, 1972, “
On Calculating With B-Splines,” J. Approximation Theory,
6(1), pp. 50–62.

[CrossRef]
Cox,
M.
, 1972, “
The Numerical Evaluation of B-Spline,” J. Inst. Math. Appl.,
10(2), pp. 134–149.

[CrossRef]
de Boor,
C.
, 2001, A Practical Guide to Splines, Revised ed.,
Springer,
New York.

Thakur,
H.
,
Singh,
K. M.
, and
Sahoo,
P. K.
, 2010, “
Meshless Local Petrov–Galerkin Method for Nonlinear Heat Conduction Problems,” Numer. Heat Transfer, Part B,
56(5), pp. 393–410.

[CrossRef]
Hematiyan,
M. R.
,
Mohammadi,
M.
,
Marin,
L.
, and
Khosravifard,
A.
, 2011, “
Boundary Element Analysis of Uncoupled Transient Thermo-Elastic Problems With Time- and Space-Dependent Heat Sources,” Appl. Math. Comput.,
218(5), pp. 1862–1882.

Mohammadi,
M.
,
Hematiyan,
M. R.
, and
Marin,
L.
, 2010, “
Boundary Element Analysis of Nonlinear Transient Heat Conduction Problems Involving Non-Homogenous and Nonlinear Heat Sources Using Time-Dependent Fundamental Solutions,” Eng. Anal. Boundary Elem.,
34(7), pp. 655–665.

[CrossRef]
Touloukian,
Y. S.
, 1976, Thermophysical Properties of High Temperature Solid Materials,
Macmillan,
New York.

Khosravifard,
A.
,
Hematiyan,
M. R.
, and
Marin,
L.
, 2011, “
Nonlinear Transient Heat Conduction Analysis of Functionally Graded Materials in the Presence of Heat Sources Using an Improved Meshless Radial Point Interpolation Method,” Appl. Math. Modell.,
35(9), pp. 4157–4174.

[CrossRef]
Shu,
C.
,
Ding,
H.
, and
Yeo,
K. S.
, 2003, “
Local Radial Basis Function-Based Differential Quadrature Method and Its Application to Solve Two Dimensional Incompressible Navier–Stokes Equations,” Comput. Methods Appl. Mech. Eng.,
192(7–8), pp. 941–954.

[CrossRef]
Shan,
Y. Y.
,
Shu,
C.
, and
Qin,
N.
, 2009, “
Multiquadric Finite Difference (MQ-FD) Method and Its Application,” Adv. Appl. Math. Mech.,
1(5), pp. 615–638.

Hidayat,
M. I. P.
,
Ariwahjoedi,
B.
, and
Parman,
S.
, 2015, “
A New Meshless Local B-Spline Basis Functions-FD Method for Two-Dimensional Heat Conduction Problems,” Int. J. Numer. Methods Heat Fluid Flow,
25(2), pp. 225–251.

[CrossRef]
Sarra,
S. A.
, 2006, “
Integrated Multiquadric Radial Basis Function Approximation Methods,” Comput. Math. Appl.,
51(8), pp. 1283–1296.

[CrossRef]
Hidayat,
M. I. P.
,
Ariwahjoedi,
B.
, and
Parman,
S.
, 2015, “
B-Spline Collocation With Domain Decomposition Method and Its Application for Singularly Perturbed Convection-Diffusion Problems,” Recent Trends in Physics of Material Science and Technology,
F. L. Gaol
,
K. Shrivastava
, and
J. Akhtar
, eds.,
Springer,
Berlin.