0
Technical Brief

Enhancement of Interfacial Thermal Conductance of SiC by Overlapped Carbon Nanotubes and Intertube Atoms

[+] Author and Article Information
Chengcheng Deng, Xiaoxiang Yu

School of Energy and Power Engineering,
Huazhong University of Science and Technology,
Wuhan 430074, China

Xiaoming Huang

School of Energy and Power Engineering,
Huazhong University of Science and Technology,
Wuhan 430074, China
e-mail: xmhuang@hust.edu.cn

Nuo Yang

State Key Laboratory of Coal Combustion,
Huazhong University of Science and Technology,
Wuhan 430074, China;
Nano Interface Center for Energy (NICE),
School of Energy and Power Engineering,
Huazhong University of Science and Technology,
Wuhan 430074, China
e-mail: nuo@hust.edu.cn

1C. Deng and X. Yu contributed equally to this work.

2Corresponding authors.Presented at the 2016 ASME 5th Micro/Nanoscale Heat & Mass Transfer International Conference. Paper No. MNHMT2016-6325.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received May 30, 2016; final manuscript received January 26, 2017; published online March 1, 2017. Assoc. Editor: Robert D. Tzou.

J. Heat Transfer 139(5), 054504 (Mar 01, 2017) (4 pages) Paper No: HT-16-1324; doi: 10.1115/1.4035998 History: Received May 30, 2016; Revised January 26, 2017

A new way was proposed to enhance the interfacial thermal conductance (ITC) of silicon carbide (SiC) composite through the overlapped carbon nanotubes (CNTs) and intertube atoms. By nonequilibrium molecular dynamics (NEMD) simulations, the dependence of ITC on both the number of intertube atoms and the temperature was studied. It is indicated that the ITC can be significantly enhanced by adding intertube atoms and finally becomes saturated with the increase of the number of intertube atoms. And the mechanism is discussed by analyzing the probability distributions of atomic forces and vibrational density of states (VDOS). This work may provide some guidance on enhancing the ITC of CNT-based composites.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chelnokov, V. , and Syrkin, A. , 1997, “ High Temperature Electronics Using SiC: Actual Situation and Unsolved Problems,” Mater. Sci. Eng., B, 46(1), pp. 248–253. [CrossRef]
Sarro, P. M. , 2000, “ Silicon Carbide as a New MEMS Technology,” Sens. Actuators, A, 82(1), pp. 210–218. [CrossRef]
Weitzel, C. E. , Palmour, J. W. , Carter, C. H., Jr. , Moore, K. , Nordquist, K. J. , Allen, S. , Thero, C. , and Bhatnagar, M. , 1996, “ Silicon Carbide High-Power Devices,” IEEE Trans. Electron Devices, 43(10), pp. 1732–1741. [CrossRef]
Verrall, R. , Vlajic, M. , and Krstic, V. , 1999, “ Silicon Carbide as an Inert-Matrix for a Thermal Reactor Fuel,” J. Nucl. Mater., 274(1), pp. 54–60. [CrossRef]
Möslang, A. , and Wiss, T. , 2006, “ Materials for Energy: From Fission Towards Fusion,” Nat. Mater., 5(9), pp. 679–680. [CrossRef] [PubMed]
Kawamura, T. , Hori, D. , Kangawa, Y. , Kakimoto, K. , Yoshimura, M. , and Mori, Y. , 2008, “ Thermal Conductivity of SiC Calculated by Molecular Dynamics,” Jpn. J. Appl. Phys., 47(12), pp. 8898–8901. [CrossRef]
Casady, J. , and Johnson, R. W. , 1996, “ Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review,” Solid-State Electron., 39(10), pp. 1409–1422. [CrossRef]
Cahill, D. G. , Ford, W. K. , Goodson, K. E. , Mahan, G. D. , Majumdar, A. , Maris, H. J. , Merlin, R. , and Phillpot, S. R. , 2003, “ Nanoscale Thermal Transport,” J. Appl. Phys., 93(2), pp. 793–818. [CrossRef]
Hu, L. , Zhang, L. , Hu, M. , Wang, J.-S. , Li, B. , and Keblinski, P. , 2010, “ Phonon Interference at Self-Assembled Monolayer Interfaces: Molecular Dynamics Simulations,” Phys. Rev. B, 81(23), p. 235427. [CrossRef]
Zhang, L. , Keblinski, P. , Wang, J.-S. , and Li, B. , 2011, “ Interfacial Thermal Transport in Atomic Junctions,” Phys. Rev. B, 83(6), p. 064303. [CrossRef]
Hopkins, P. E. , Duda, J. C. , Petz, C. W. , and Floro, J. A. , 2011, “ Controlling Thermal Conductance Through Quantum Dot Roughening at Interfaces,” Phys. Rev. B, 84(3), p. 035438. [CrossRef]
Chalopin, Y. , Esfarjani, K. , Henry, A. , Volz, S. , and Chen, G. , 2012, “ Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics,” Phys. Rev. B, 85(19), p. 195302. [CrossRef]
Tian, Z. , Esfarjani, K. , and Chen, G. , 2012, “ Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method,” Phys. Rev. B, 86(23), p. 235304. [CrossRef]
Luo, T. , and Chen, G. , 2013, “ Nanoscale Heat Transfer—From Computation to Experiment,” Phys. Chem. Chem. Phys., 15(10), pp. 3389–3412. [CrossRef] [PubMed]
Hopkins, P. E. , 2013, “ Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance,” ISRN Mech. Eng., 2013, p. 682586. [CrossRef]
Li, M. , Zhang, J. , Hu, X. , and Yue, Y. , 2015, “ Thermal Transport Across Graphene/SiC Interface: Effects of Atomic Bond and Crystallinity of Substrate,” Appl. Phys. A, 119(2), pp. 415–424. [CrossRef]
Yang, N. , Luo, T. , Esfarjani, K. , Henry, A. , Tian, Z. , Shiomi, J. , Chalopin, Y. , Li, B. , and Chen, G. , 2015, “ Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations,” J. Comput. Theor. Nanosci., 12(2), pp. 168–174. [CrossRef]
Zhou, Y. , Zhang, X. , and Hu, M. , 2016, “ An Excellent Candidate for Largely Reducing Interfacial Thermal Resistance: A Nano-Confined Mass Graded Interface,” Nanoscale, 8(4), pp. 1994–2002. [CrossRef] [PubMed]
Kim, P. , Shi, L. , Majumdar, A. , and McEuen, P. L. , 2001, “ Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett., 87(21), p. 215502. [CrossRef] [PubMed]
Liao, Q. , Liu, Z. , Liu, W. , Deng, C. , and Yang, N. , 2015, “ Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites,” Sci. Rep., 5, p. 16543. [CrossRef] [PubMed]
Hone, J. , Whitney, M. , Piskoti, C. , and Zettl, A. , 1999, “ Thermal Conductivity of Single-Walled Carbon Nanotubes,” Phys. Rev. B, 59(4), pp. R2514–R2516. [CrossRef]
Berber, S. , Kwon, Y.-K. , and Tománek, D. , 2000, “ Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett., 84(20), pp. 4613–4616. [CrossRef] [PubMed]
Kuang, Y. , and Huang, B. , 2015, “ Effects of Covalent Functionalization on the Thermal Transport in Carbon Nanotube/Polymer Composites: A Multi-Scale Investigation,” Polymer, 56, pp. 563–571. [CrossRef]
De Volder, M. , Tawfick, S. , Baughman, R. , and Hart, A. , 2013, “ Carbon Nanotubes: Present and Future Commercial Applications,” Science, 339(6119), pp. 535–539. [CrossRef] [PubMed]
Dresselhaus, M. S. , Dresselhaus, G. , and Eklund, P. C. , 1996, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications, Academic Press, San Diego, CA.
Hu, M. , Keblinski, P. , Wang, J.-S. , and Raravikar, N. , 2008, “ Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube,” J. Appl. Phys., 104(8), p. 083503. [CrossRef]
Bao, H. , Shao, C. , Luo, S. , and Hu, M. , 2014, “ Enhancement of Interfacial Thermal Transport by Carbon Nanotube-Graphene Junction,” J. Appl. Phys., 115(5), p. 053524. [CrossRef]
Diao, J. , Srivastava, D. , and Menon, M. , 2008, “ Molecular Dynamics Simulations of Carbon Nanotube/Silicon Interfacial Thermal Conductance,” J. Chem. Phys., 128(16), p. 164708. [CrossRef] [PubMed]
Veedu, V. P. , Cao, A. , Li, X. , Ma, K. , Soldano, C. , Kar, S. , Ajayan, P. M. , and Ghasemi-Nejhad, M. N. , 2006, “ Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests,” Nat. Mater., 5(6), pp. 457–462. [CrossRef] [PubMed]
Minus, M. L. , Chae, H. G. , and Kumar, S. , 2012, “ Polyethylene Crystallization Nucleated by Carbon Nanotubes Under Shear,” ACS Appl. Mater. Interfaces, 4(1), pp. 326–330. [CrossRef] [PubMed]
Yu, K. , Lee, J. M. , Kim, J. , Kim, G. , Kang, H. , Park, B. , Ho Kahng, Y. , Kwon, S. , Lee, S. , Lee, B. H. , Park, H. I. , Kim, S. O. , and Lee, K. , 2014, “ Semiconducting Polymers With Nanocrystallites Interconnected Via Boron-Doped Carbon Nanotubes,” Nano Lett., 14(12), pp. 7100–7106. [CrossRef] [PubMed]
Jin, C. , Suenaga, K. , and Iijima, S. , 2008, “ Plumbing Carbon Nanotubes,” Nat. Nanotechnol., 3(1), pp. 17–21. [CrossRef] [PubMed]
Plimpton, S. , 1995, “ Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Tersoff, J. , 1989, “ Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems,” Phys. Rev. B, 39(8), pp. 5566–5568. [CrossRef]
Tersoff, J. , 1994, “ Chemical Order in Amorphous Silicon Carbide,” Phys. Rev. B, 49(23), p. 16349. [CrossRef]
Maruyama, S. , 2002, “ A Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs,” Physica B, 323(1–4), pp. 193–195. [CrossRef]
Zhang, G. , and Li, B. , 2005, “ Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature,” J. Chem. Phys., 123(11), p. 114714. [CrossRef] [PubMed]
Cui, L. , Feng, Y. , Tan, P. , and Zhang, X. , 2015, “ Heat Conduction in Double-Walled Carbon Nanotubes With Intertube Additional Carbon Atoms,” Phys. Chem. Chem. Phys., 17(25), pp. 16476–16482. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Longitudinal view of simulation system and (b) and (c) temperature profiles and cross section views of simulation system for the cases of N = 0 and N = 2. N denotes the number of intertube atoms. The overlapped segment of CNTs and the whole parts between SiC are considered as the thermal interfaces of two CNTs and the whole simulation system, respectively.

Grahic Jump Location
Fig. 2

The interfacial thermal conductance (G) between two CNTs (GCNTs) and the total thermal conductance (GTotal) of simulation system at room temperature as functions of the number of intertube atoms (N). The interfacial thermal conductance shows a sharp increase from N = 0 to N = 1. Both GCNTs and GTotalconverge gradually with the increase of N. Finally, GCNTs is enhanced by 2 orders of magnitude, and GTotal is enhanced by almost 20 times as well.

Grahic Jump Location
Fig. 3

The temperature dependence of interfacial thermal conductance (G) between two CNTs for some typical cases of different N. Monotonic increases are observed as a function of temperature for all the cases.

Grahic Jump Location
Fig. 4

The probability distributions of atomic forces along (a) radial, (b) axial, and (c) tangential directions, and (d) vibrational density of states (VDOS) along radial direction of the atom at the connection of outer CNT (circled one in (d)) for the cases of N = 0 and N = 2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In