0
Research Papers: Micro/Nanoscale Heat Transfer

Nano-Phase Change Materials for Electronics Cooling Applications

[+] Author and Article Information
Laura Colla

Istituto per le Tecnologie della Costruzione,
CNR,
Corso Stati Uniti, 4,
Padova 35127, Italy
e-mail: laura_colla@libero.it

Davide Ercole

Dipartimento di Ingegneria Industriale
e dell'Informazione,
Università degli Studi della Campania
“Luigi Vanvitelli,”
Via Roma 29,
Aversa 81031, Italy
e-mail: davide.ercole@unicampania.it

Laura Fedele

Istituto per le Tecnologie della Costruzione,
CNR,
Corso Stati Uniti, 4,
Padova 35127, Italy
e-mail: fedele@itc.cnr.it

Simone Mancin

Fellow ASME
Department of Management and Engineering,
University of Padova,
Stradella S. Nicola, 1,
Vicenza 36100, Italy
e-mail: simone.mancin@unipd.it

Oronzio Manca

Dipartimento di Ingegneria Industriale
e dell’Informazione,
Università degli Studi della Campania
“Luigi Vanvitelli,”
Via Roma 29,
Aversa 81031, Italy
e-mail: oronzio.manca@unicampania.it

Sergio Bobbo

Istituto per le Tecnologie della Costruzione,
CNR,
Corso Stati Uniti, 4,
Padova 35127, Italy
e-mail: bobbo@itc.cnr.it

1Corresponding author.

Presented at the 2016 ASME 5th Micro/Nanoscale Heat & Mass Transfer International Conference. Paper No. MNHMT2016-6613.Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 1, 2016; final manuscript received January 10, 2017; published online March 7, 2017. Assoc. Editor: Zhuomin Zhang.

J. Heat Transfer 139(5), 052406 (Mar 07, 2017) (9 pages) Paper No: HT-16-1344; doi: 10.1115/1.4036017 History: Received June 01, 2016; Revised January 10, 2017

The present work aims at investigating a new challenging use of aluminum oxide (Al2O3) nanoparticles to enhance the thermal properties (thermal conductivity, specific heat, and latent heat) of pure paraffin waxes to obtain a new class of phase change materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding 0.5 and 1.0 wt  % of Al2O3 nanoparticles in two paraffin waxes having melting temperatures of 45 and 55 °C, respectively. The thermophysical properties such as specific heat, latent heat, and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCMs. Furthermore, a numerical comparison between the use of the pure paraffin waxes and the nano-PCMs obtained in a typical electronics passive cooling device was developed and implemented. A numerical model is accomplished to simulate the heat transfer inside the cavity either with PCM or nano-PCM. Numerical simulations were carried out using the ansys-fluent 15.0 code. Results in terms of solid and liquid phase fractions and temperatures and melting time were reported and discussed. They showed that the nano-PCMs determine a delay in the melting process with respect to the pure PCMs.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Reay, D. A. , Kew, P. A. , and McGlen, R. J. , 2014, Heat Pipes Theory, Design and Applications, 6th ed., Butterworth–Heinemann, Oxford, UK, pp. 207–225.
Mancin, S. , Diani, A. , Doretti, L. , Hooman, K. , and Rossetto, L. , 2015, “ Experimental Analysis of Phase Change Phenomenon of Paraffin Waxes Embedded in Copper Foams,” Int. J. Therm. Sci., 90, pp. 79–89. [CrossRef]
Zalba, B. , Marìn, J. M. , Cabeza, L. F. , and Mehling, H. , 2003, “ Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications,” Appl. Therm. Eng., 23(3), pp. 251–283. [CrossRef]
Sharma, A. , Tyagi, V. V. , Chen, C. R. , and Buddhi, D. , 2009, “ Review on Thermal Energy Storage With Phase Change Materials and Applications,” Renewable Sustainable Energy Rev., 13(2), pp. 318–345. [CrossRef]
Agyenim, F. , Hewitt, N. , Eames, P. , and Smyth, M. , 2010, “ A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS),” Renewable Sustainable Energy Rev., 14(2), pp. 615–628. [CrossRef]
Jegadheeswaran, S. , and Pohekar, S. D. , 2009, “ Performance Enhancement in Latent Heat Thermal Storage System: A Review,” Renewable Sustainable Energy Rev., 13(9), pp. 2225–2244. [CrossRef]
Fan, L. , and Khodadadi, J. M. , 2011, “ Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review,” Renewable Sustainable Energy Rev., 15(1), pp. 24–46. [CrossRef]
Baby, R. , and Balaji, C. , 2012, “ Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling,” Int. J. Heat Mass Transfer, 55(5–6), pp. 1642–1649. [CrossRef]
Baby, R. , and Balaji, C. , 2013, “ Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study,” Appl. Therm. Eng., 54(1), pp. 65–77. [CrossRef]
Baby, R. , and Balaji, C. , 2014, “ Thermal Performance of a PCM Heat Sink Under Different Heat Loads: An Experimental Study,” Int. J. Therm. Sci., 79, pp. 240–249. [CrossRef]
Fan, L. W. , Xiao, Y. Q. , Zeng, Y. , Fang, X. , Wang, X. , Xu, X. , Yu, Z. T. , Hong, R. H. , Hu, Y. C. , and Cen, K. F. , 2013, “ Effects of Melting Temperature and the Presence of Internal Fins on the Performance of a Phase Change Material (PCM)-Based Heat Sink,” Int. J. Therm. Sci., 70, pp. 114–126. [CrossRef]
Mahmoud, S. , Tang, A. , Toh, C. , AL-Dadah, R. , and Soo, S. L. , 2013, “ Experimental Investigation of Inserts Configurations and PCM Type on the Thermal Performance of PCM Based Heat Sinks,” Appl. Energy, 112, pp. 1349–1356. [CrossRef]
Hong, S. T. , and Herling, D. R. , 2006, “ Open-Cell Aluminum Foams Filled With Phase Change Materials as Compact Heat Sinks,” Scr. Mater., 55(10), pp. 887–890. [CrossRef]
Mesalhy, O. , Lafdi, K. , and Elgafy, A. , 2006, “ Carbon Foam Matrices Saturated With PCM for Thermal Protection Purposes,” Carbon, 44(10), pp. 2080–2088. [CrossRef]
Zhao, C. Y. , Lu, W. , and Tian, Y. , 2010, “ Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs),” Sol. Energy, 84(8), pp. 1402–1412. [CrossRef]
Zhoua, D. , and Zhao, C. Y. , 2011, “ Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials,” Appl. Therm. Eng., 31(5), pp. 970–977. [CrossRef]
Kibria, M. A. , Anisur, M. R. , Mahfuz, M. H. , Saidur, R. , and Metselaar, I. H. S. C. , 2015, “ A Review on Thermophysical Properties of Nanoparticle Dispersed Phase Change Materials,” Energy Convers. Manage., 95, pp. 69–89. [CrossRef]
Khodadadi, J. M. , and Hosseinizadeh, S. F. , 2007, “ Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Great Potential for Improved Thermal Energy Storage,” Int. Commun. Heat Mass Transfer, 34(5), pp. 534–543. [CrossRef]
Shin, D. , and Banerjee, D. , 2011, “ Enhanced Specific Heat of Silica Nanofluid,” ASME J. Heat Transfer, 133(2), p. 024501. [CrossRef]
Chieruzzi, M. , Cerritelli, G. F. , Miliozzi, A. , and Kenny, J. M. , 2013, “ Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage,” Nanoscale Res. Lett., 8(1), p. 448. [CrossRef] [PubMed]
Zhichao, L. , Qiang, Z. , and Gaohui, W. , 2015, “ Preparation and Enhanced Heat Capacity of Nano-Titania Doped Erythritol as Phase Change Material,” Int. J. Heat Mass Transfer, 80, pp. 653–659. [CrossRef]
Jiang, X. , Luo, R. , Peng, F. , Fang, Y. , Akiyama, T. , and Wang, S. , 2015, “ Synthesis, Characterization and Thermal Properties of Paraffin Microcapsules Modified With Nano-Al2O3,” Appl. Energy, 137, pp. 731–737. [CrossRef]
Karkri, M. , Lachheb, M. , Nógellovác, Z. , Boh, B. , Sumiga, B. , AlMaadeed, M. A. , Fethi, A. , and Krupa, I. , 2015, “ Thermal Properties of Phase-Change Materials Based on High-Density Polyethylene Filled With Micro-Encapsulated Paraffin Wax for Thermal Energy Storage,” Energy Build., 88, pp. 144–152. [CrossRef]
He, Q. , Wang, S. , Tong, M. , and Liu, Y. , 2012, “ Experimental Study on Thermophysical Properties of Nanofluids as Phase-Change Material (PCM) in Low Temperature Cool Storage,” Energy Convers. Manage., 64, pp. 199–205. [CrossRef]
Wang, J. , Xie, H. , Guo, Z. , Guan, L. , and Li, Y. , 2014, “ Improved Thermal Properties of Paraffin Wax by the Addition of TiO2 Nanoparticles,” Appl. Therm. Eng., 73(2), pp. 1541–1547. [CrossRef]
Shaikh, S. , Lafdi, K. , and Hallinan, K. , 2008, “ Carbon Nanoadditives to Enhance Latent Energy Storage of Phase Change Materials,” J. Appl. Phys., 103(9), p. 094302. [CrossRef]
Colla, L. , Fedele, L. , Mancin, S. , Danza, L. , and Manca, O. , 2017, “ Nano-PCMs for Enhanced Energy Storage and Passive Cooling Applications,” Appl. Therm. Eng., 110, pp. 584–589. [CrossRef]
Voller, V. R. , and Prakash, C. , 1987, “ A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems,” Int. J. Heat Mass Transfer, 30(8), pp. 1709–1719. [CrossRef]
Hosseini, S. M. J. , Ranjbar, A. A. , Sedighi, K. , and Rahimi, M. , 2013, “ Melting of Nanoparticle-Enhanced Phase Change Material Inside Shell and Tube Heat Exchanger,” J. Engineering, 2013, p. 784681.
Nithyanandam, K. , and Pitchumani, R. , 2014, “ Computational Studies on Metal Foam and Heat Pipe Enhanced Latent Thermal Energy Storage,” ASME J. Heat Transfer, 136(5), p. 051503. [CrossRef]
Al-Abidi, A. , Bin Mat, S. , Sopian, K. , Sulaiman, M. Y. , and Mohammed, A. T. , 2013, “ CFD Applications for Latent Heat Thermal Energy Storage: A Review,” Renewable Sustainable Energy Rev., 20, pp. 353–363. [CrossRef]
Krishnan, S. , Murthy, J. Y. , and Garimella, S. V. , 2005, “ A Two-Temperature Model for Solid–Liquid Phase Change in Metal Foams,” ASME J. Heat Transfer, 127(9), pp. 995–1004. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Hot disk sensor (a), thermal conductivity setup (b), and differential scanning calorimeter, detailed calorimetric cells (c)

Grahic Jump Location
Fig. 2

Specific heat capacity of paraffin waxes RT55 and its nano-PCMs, as a function of temperature

Grahic Jump Location
Fig. 3

Effect of Al2O3 nanoparticles on the latent heat of RT55 paraffin wax as a function of the nanoparticles' concentration

Grahic Jump Location
Fig. 4

Simulated two-dimensional domain

Grahic Jump Location
Fig. 5

The numerical grid

Grahic Jump Location
Fig. 6

Comparison between the two pure paraffin waxes in term of mean values of liquid fraction as a function of the time at 10 W

Grahic Jump Location
Fig. 7

Comparison between the two pure paraffin waxes in term of mean values of temperature as a function of the time at 10 W

Grahic Jump Location
Fig. 8

Comparison between the two nano-PCMs 0.5% in term of (a) mean values of liquid fraction and (b) mean temperature, as a function of the time at 10 W

Grahic Jump Location
Fig. 9

Comparison between the two nano-PCMs 1.0% in term of (a) mean values of liquid fraction and (b) mean temperature as a function of the time at 10 W

Grahic Jump Location
Fig. 10

Values of liquid fraction for the pure PCM and its nano-PCMs at different heat flow rates: (a) RT45 and (b) RT55

Grahic Jump Location
Fig. 11

Maximum junction temperature for the pure PCM and its nano-PCMs at different heat flow rates: (a) RT45 and (b) RT55

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In