0
research-article

Water evaporation and condensation in air with radiation: the self-similar Spalding model

[+] Author and Article Information
M. Q. Brewster

Department of Mechanical Science and Engineering University of Illinois Urbana, IL 61801
brewster@illinois.edu

1Corresponding author.

ASME doi:10.1115/1.4036075 History: Received August 23, 2016; Revised February 17, 2017

Abstract

Several simple ways of improving the accuracy of Spalding model predictions over common textbook conventions for air/water evaporation/condensation problems are illustrated using open-literature examples. First is the choice of thermodynamic reference state for enthalpy evaluation. The common practice of choosing the steam table reference point (0.01°C) with water-vapor enthalpy of hfg (2501 kJ/kg) and air enthalpy of zero introduces an enthalpy mismatch between air and water vapor that unnecessarily compromises accuracy. Second is judicious choice of the blowing factor in high-rate mass transfer situations. The laminar boundary layer blowing factor is more accurate than the common stagnant-film (Couette flow) blowing factor for flat-plate flow and may be more accurate for a cylinder in crossflow under laminar conditions, as illustrated by the example of air leak effect on steam condenser tube performance. Third is radiation modeling, often a problematic or ignored feature in this type of problem. Two common, but opposite, assumptions about radiation participation in water—transparent interface and opaque interface—are shown to be equivalent for most purposes. A methodology is introduced for modeling true interfacial absorption/emission associated with phase change if/when the amount of this effect becomes known well enough to justify its inclusion. The importance of including radiation is illustrated by several examples: cloud droplet evaporation-condensation, sweat cooling, and the wet-bulb psychrometer. Fourth is inaccuracy introduced by unnecessarily setting Lewis number to unity.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In