The heat transfer part of the solution (see Table 3) does depend on the reference choice. The solution to this problem presented in Ref. [3] uses the Ref-C system, which yields for the net radiant flux q_{r} = −15.5 kW/m^{2} and for the gas-side conductive/convective heat flux q_{c,s} = −2757 W/m^{2}. If approximations used in Ref. [3] are relaxed, q_{c,s} changes slightly to −2749 W/m^{2} with the Spalding model and Ref-C. Reference-A yields q_{r} = −13.2 kW/m^{2}. This radiant flux magnitude is 15% lower than that with Ref-C. Reference-B gives q_{r} = −15.5 kW/m^{2}, which is the same as the reported result for Ref-C. That Ref-B and Ref-C show equivalent results is to be expected since they both match enthalpies between air and water vapor in a similar way; they just do it at different reference temperatures (water triple point versus T_{s}) and with different reference vapor enthalpies (2501 kJ/kg versus zero). As for the gas-side conducted heat, Ref-B gives q_{c,s} = −2818 W/m^{2}, which is only 2% different from the Ref-C result of q_{c,s} = −2757 (or 2749) W/m^{2}, whereas Ref-A gives q_{c,s} = −5121 W/m^{2}. The energy flux j_{i,s}h_{i,s}(1 − (1/Le)) is 2433, 71, and 0 W/m^{2} for Ref-A,B,C, respectively. The ratio of species diffusive enthalpy flux to Fourier conductive flux magnitude is 48%, 1%, and 0, respectively, for Ref-A,B,C, which explains the loss of accuracy of Ref-A relative to Ref-B and Ref-C. It is again interesting to note that if the energy flux j_{i,s}h_{i,s}(1 − (1/Le)) = 2433 W/m^{2} in Ref-A is shifted from gas-side conduction to liquid-phase radiation absorption, the latter fluxes come much closer to the Ref-B and Ref-C solutions. Specifically, gas conduction q_{c,s} would become −5121 + 2433 = −2688 W/m^{2} and q_{r} would become −13.2 − 2.4 = −15.6 kW/m^{2}. A flux of 2433 W/m^{2} is the amount of energy neglected in the Spalding approximation of the interface energy balance, Eq. (4), with Ref-A. This fact suggests a possible way to correct inaccurate model predictions that have been calculated using mismatched enthalpy references.