Wu,
J.
,
Gui,
D.
,
Liu,
D.
, and
Feng,
X.
, 2015, “
The Characteristic Variational Multiscale Method for Time Dependent Conduction–Convection Problems,” Int. Commun. Heat Mass Transfer,
68, pp. 58–68.

[CrossRef]
Zhang,
L.
,
Zhao,
J. M.
, and
Liu,
L. H.
, 2016, “
A New Stabilized Finite Element Formulation for Solving Radiative Transfer Equation,” ASME J. Heat Transfer,
138(6), p. 064502.

Carslaw,
H. S.
, and
Jaeger,
J. C.
, 1959, Conduction of Heat in Solids, 2nd ed.,
Clarendon Press,
Oxford, UK.

Brian,
P. L. T.
, 1961, “
A Finite-Difference Method of High-Order Accuracy for the Solution of Three-Dimensional Transient Heat Conduction Problems,” Am. Inst. Chem. Eng. J.,
7(3), pp. 367–370.

[CrossRef]
Wang,
Y.
,
Qin,
Y.
, and
Zhang,
J.
, 2011, “
Application of New Finite Volume Method (FVM) on Transient Heat Transferring,” Information Computing and Applications (Communications in Computer and Information Science, Vol. 105), Springer, Berlin, pp. 109–116.

Zienkiewicz,
O. C.
, and
Taylor,
R. L.
, 2000, The Finite Element Method, Vol.
1–3,
Butterworth,
Oxford, UK.

Bruch,
J. C.
, and
Zyvoloski,
G.
, 1974, “
Transient Two-Dimensional Heat Conduction Problems Solved by the Finite Element Method,” Int. J. Numer. Methods,
8(3), pp. 481–494.

[CrossRef]
Lewis,
R. W.
,
Morgan,
K.
,
Thomas,
H. R.
, and
Seetharamu,
K.
, 1996, The Finite Element Method in Heat Transfer Analysis,
Wiley,
Chichester, UK.

Brebbia,
C. A.
,
Telles,
J. C.
, and
Wrobel,
L. C.
, 1984, Boundary Element Techniques, Theory and Applications in Engineering,
Springer,
New York.

Wrobel,
L. C.
, and
Brebbia,
C. A.
, 1979, The Boundary Element Method for Steady-State and Transient Heat Conduction,
Pineridge Press,
Swansea, UK.

Tanaka,
M.
,
Matsumoto,
T.
, and
Yang,
Q. F.
, 1994, “
Time-Stepping Boundary Element Method Applied to 2-D Transient Heat Conduction Problems,” Appl. Math. Modell.,
18(10), pp. 569–576.

[CrossRef]
Majchrzak,
E.
, 2001, Boundary Element Method in Heat Transfer,
Technical University of Czestochowa,
Czestochowa, Poland (in Polish).

Sutradhar,
A.
,
Paulino,
G. H.
, and
Gray,
L. J.
, 2002, “
Transient Heat Conduction in Homogeneous and Non-Homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method,” Eng. Anal. Boundary Elem.,
26(2), pp. 119–132.

[CrossRef]
Partridge,
P. W.
,
Brebbia,
C. A.
, and
Wrobel,
L. C.
, 1992, The Dual Reciprocity Boundary Element Method,
Computational Mechanics Publications,
Southampton, UK.

Nowak,
A. J.
, 1989, “
The Multiple Reciprocity Method of Solving Transient Heat Conduction Problems,” Boundary Elements XI, Vol.
2,
Computational Mechanics Publications,
Southampton, UK.

Yu,
K. H.
,
Kadarman,
A. H.
, and
Djojodihardjo,
H.
, 2010, “
Development and Implementation of Some BEM Variants—A Critical Review,” Eng. Anal. Boundary Elem.,
34(10), pp. 884–899.

[CrossRef]
Johansson,
B. T.
, and
Lesnic,
D.
, 2008, “
A Method of Fundamental Solutions for Transient Heat Conduction,” Eng. Anal. Boundary Elem.,
32(9), pp. 697–703.

[CrossRef]
Kołodziej,
J. A.
,
Mierzwiczak,
M.
, and
Ciałkowski,
M.
, 2010, “
Application of the Method of Fundamental Solutions and Radial Basis Functions for Inverse Heat Source Problem in Case of Steady-State,” Int. Commun. Heat Mass Transfer,
37(2), pp. 121–124.

[CrossRef]
Mierzwiczak,
M.
, and
Kołodziej,
J. A.
, 2012, “
Application of the Method of Fundamental Solutions With the Laplace Transformation for the Inverse Transient Heat Source Problem,” J. Theor. Appl. Mech.,
50(4), pp. 1011–1023.

Zieniuk,
E.
, 2003, “
Bézier Curves in the Modification of Boundary Integral Equations (BIE) for Potential Boundary-Values Problems,” Int. J. Solids Struct.,
40(9), pp. 2301–2320.

[CrossRef]
Zieniuk,
E.
, 2003, “
Hermite Curves in the Modification of Integral Equations for Potential Boundary-Value Problems,” Eng. Comput.,
20(2), pp. 112–128.

[CrossRef]
Zieniuk,
E.
, and
Boltuc,
A.
, 2006, “
Bézier Curves in the Modeling of Boundary Geometry for 2D Boundary Problems Defined by Helmholtz Equation,” J. Comput. Acoust.,
14(3), pp. 353–367.

[CrossRef]
Zieniuk,
E.
, and
Boltuc,
A.
, 2006, “
Non-Element Method of Solving 2D Boundary Problems Defined on Polygonal Domains Modeled by Navier Equation,” Int. J. Solids Struct.,
43(25–26), pp. 7939–7958.

[CrossRef]
Zieniuk,
E.
, 2007, “
Modelling and Effective Modification of Smooth Boundary Geometry in Boundary Problems Using B-Spline Curves,” Eng. Comput.,
4(23), pp. 39–48.

[CrossRef]
Bołtuć,
A.
, and
Zieniuk,
E.
, 2011, “
Modeling Domains Using Bézier Surfaces in Plane Boundary Problems Defined by the Navier–Lame Equation With Body Forces,” Eng. Anal. Boundary Elem.,
35(10), pp. 1116–1122.

[CrossRef]
Zieniuk,
E.
, 2013, Computational Method PIES for Solving Boundary Value Problems,
Polish Scientific Publishers PWN,
Warsaw, Poland (in Polish).

Zieniuk,
E.
,
Sawicki,
D.
, and
Bołtuć,
A.
, 2014, “
Parametric Integral Equations Systems in 2D Transient Heat Conduction Analysis,” Int. J. Heat Mass Transfer,
78, pp. 571–587.

[CrossRef]
Piegl,
L.
, and
Tiller,
W.
, 1997, The NURBS Book, 2nd ed.,
Springer-Verlag, Berlin.

Foley,
J.
,
van Dam,
A.
,
Feiner,
S.
,
Hughes,
J.
, and
Phillips,
R.
, 1994, Introduction to Computer Graphics,
Addison-Wesley,
Boston, MA.

Farin,
G.
, 1990, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,
Academic Press,
New York.

Mortenson,
M.
, 1985, Geometric Modelling,
Wiley,
New York.

Cody,
W. J.
, and
Thacher,
H. C., Jr.
, 1968, “
Rational Chebyshev Approximations for Exponential Integral E_{1} (x),” Math. J. Comput.,
22(103), pp. 641–649.

Gottlieb,
D.
, and
Orszag,
S. A.
, 1977, Numerical Analysis of Spectral Methods: Theory and Applications,
SIAM,
Philadelphia, PA.