0
Research Papers: Radiative Heat Transfer

Numerical Study of Transient Convection With Volumetric Radiation Using an Hybrid Lattice Boltzmann Bhatnagar–Gross–Krook–Control Volume Finite Element Method

[+] Author and Article Information
Raoudha Chaabane

Laboratory of Thermal and
Energetic Systems Studies (LESTE),
National School of Engineering of Monastir,
University of Monastir,
Monastir 5000, Tunisia;
Preparatory Institute of Engineering Studies of
Monastir (IPEIM),
University of Monastir,
Monastir 5000, Tunisia
e-mail: Raoudhach@gmail.com

Faouzi Askri

Laboratory of Thermal and
Energetic Systems Studies (LESTE),
National School of Engineering of Monastir,
University of Monastir,
Monastir 5000, Tunisia
e-mail: faouzi.askri@enim.rnu.tn

Abdelmajid Jemni

Laboratory of Thermal and
Energetic Systems Studies (LESTE),
National School of Engineering of Monastir,
University of Monastir,
Monastir 5000, Tunisia
e-mail: abdelmajid.jemni@enim.rnu.tn

Sassi Ben Nasrallah

Laboratory of Thermal and
Energetic Systems Studies (LESTE),
National School of Engineering of Monastir,
University of Monastir,
Monastir 5000, Tunisia
e-mail: sassi.bennasrallah@enim.rnu.tn

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 24, 2016; final manuscript received February 28, 2017; published online May 16, 2017. Assoc. Editor: Zhuomin Zhang.

J. Heat Transfer 139(9), 092701 (May 16, 2017) (7 pages) Paper No: HT-16-1416; doi: 10.1115/1.4036154 History: Received June 24, 2016; Revised February 28, 2017

In this paper, a new hybrid numerical algorithm is developed to solve coupled convection–radiation heat transfer in a two-dimensional cavity containing an absorbing, emitting, and scattering medium. The radiative information is obtained by solving the radiative transfer equation (RTE) using the control volume finite element method (CVFEM), and the density, velocity, and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). To the knowledge of the authors, this hybrid numerical method is applied at the first time to simulate combined transient convective radiative heat transfer in 2D participating media. In order to test the efficiency of the developed method, two configurations are examined: (i) free convection with radiation in a square cavity bounded by two horizontal insulating sides and two vertical isothermal walls and (ii) Rayleigh–Benard convection with and without radiative heat transfer. The obtained results are validated against available works in literature, and the proposed method is found to be efficient, accurate, and numerically stable.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dixit, H. N. , and Babu, V. , 2006, “ Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method,” Int. J. Heat Mass Transfer, 49, pp. 727–739. [CrossRef]
Kuznik, F. , Vereilles, J. , Rusaouen, G. , and Krauss, G. , 2007, “ A Double-Population Lattice Boltzmann Method With Non-Uniform Mesh for the Simulation of Natural Convection in a Square Cavity,” Int. J. Heat Fluid Flow, 28(5), pp. 862–870. [CrossRef]
Seta, T. , Takegoshi, E. , and Okui, K. , 2006, “ Lattice Boltzmann Simulation of Natural Convection in Porous Media,” Math. Comput. Simul., 72, pp. 195–200. [CrossRef]
Kuznik, F. , and Rusaouen, G. , 2007, “ Numerical Prediction of Natural Convection Occurring in Building Components: A Double-Population Lattice Boltzmann Method,” Numer. Heat Transfer A, 52(4), pp. 315–335. [CrossRef]
Nansteel, M. W. , and Greif, R. , 1984, “ An Investigation of Natural Convection in Enclosures With Two- and Three-Dimensional Partitions,” Int. J. Heat Mass Transfer, 27(4), pp. 561–571. [CrossRef]
Chang, L. C. , Lloyd, J. R. , and Yang, K. T. , 1982, “ A Finite Difference Study of Natural Convection in Complex Enclosures,” 7th International Heat Transfer Conference, Munich, Germany, Sept. 6–10, Vol. 2, pp. 183–188.
Jami, M. , Mezrhab, A. , Bouzidi, M. , and Lallemand, P. , 2007, “ Lattice Boltzmann Method Applied to the Laminar Natural Convection in an Enclosure With a Heat-Generating Cylinder Conducting Body,” Int. J. Therm. Sci., 46(1), pp. 38–47. [CrossRef]
Bajorek, S. M. , and Lloyd, J. R. , 1982, “ Experimental Investigation of Natural Convection in Partitioned Enclosures,” ASME J. Heat Transfer, 104(3), pp. 527–532. [CrossRef]
Bilski, S. M. , Lloyd, J. R. , and Yang, K. T. , 1986, “ An Experimental Investigation of the Laminar Natural Convection Velocity Field in Square and Partitioned Enclosures,” 8th International Heat Transfer Conference, San Francisco, CA, Aug. 17–22, Vol. 4, pp. 1513–1518.
Fu, W.-S. , Perng, J. C. , and Shieh, W.-J. , 1989, “ Transient Laminar Natural Convection in an Enclosure Partitioned by an Adiabatic Baffle,” Numer. Heat Transfer, 16(3), pp. 325–350. [CrossRef]
Scott, D. , Anderson, R. , and Figliola, R. , 1988, “ Blockage of Natural Convection Boundary Layer Flow in a Multizone Enclosure,” Int. J. Heat Fluid, 9(2), pp. 208–215. [CrossRef]
Xu, K. , and Lui, S. H. , 1999, “ Rayleigh-Benard Simulation Using the Gas-Kinetic Bhatnagar-Gross-Krook Scheme in the Incompressible Limit,” Phys. Rev. E, 60(1), pp. 464–470. [CrossRef]
He, X. , Chen, S. , and Doolen, G. D. , 1998, “ A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit,” J. Comput., 146(1), pp. 282–300.
Kao, P. H. , and Yang, R. J. , 2007, “ Simulating Oscillatory Flows in Rayleigh–Benard Convection Using the Lattice Boltzmann Method,” Int. J. Heat Mass Transfer, 50(17–18), pp. 3315–3328. [CrossRef]
Hinojosa, J. F. , Estrada, C. A. , Cabanilles, R. E. , and Alvarez, G. , 2005, “ Numerical Study of Transient and Steady-State Natural Convection and Surface Radiation in Horizontal Square Open Cavity,” Numer. Heat Transfer A, 48(2), pp. 179–196. [CrossRef]
Balaji, C. , and Venkateshan, S. P. , 1995, “ Combined Conduction, Convection and Radiation in a Slot,” Int. J. Heat Fluid Flow, 16(2), pp. 139–144. [CrossRef]
Hossain, M. A. , Khanafer, K. , and Vafai, K. , 2001, “ The Effect of Radiation on Free Convection Flow of Fluid With Variable Viscosity From a Porous Vertical Plate,” Int. J. Therm. Sci., 40(2), pp. 115–124. [CrossRef]
Yucel, A. , Acharya, S. , and Williams, S. , 1989, “ Natural Convection and Radiation in a Square Enclosure,” Numer. Heat Transfer A, 15(2), pp. 261–277. [CrossRef]
Sediki, E. , Soufiani, A. , and Sifaoui, M. S. , 2003, “ Combined Gas Radiation and Laminar Mixed Convection in Vertical Circular Tubes,” Int. J. Heat Fluid Flow, 24(5), pp. 736–746. [CrossRef]
El Ayachi, R. , Raji, A. , Hasnaoui, M. , and Bahlaoui, A. , 2008, “ Combined Effect of Radiation and Natural Convection in a Square Cavity Differentially Heated With a Periodic Temperature,” Numer. Heat Transfer A, 53(12), pp. 1339–1356. [CrossRef]
Ridouane, E. H. , Hasnoui, M. , Amahmid, A. , and Raji, A. , 2004, “ Interaction Between Natural Convection and Radiation in a Square Cavity Heated From Below,” Numer. Heat Transfer A, 45(3), pp. 289–311. [CrossRef]
Sharma, A. K. , Velusamy, K. , Balaji, C. , and Venkateshan, S. P. , 2007, “ Conjugate Turbulent Natural Convection With Surface Radiation in Air Filled Rectangular Enclosures,” Int. J. Heat Mass Transfer, 50(3–4), pp. 625–639. [CrossRef]
Singh, S. N. , and Venkateshan, S. P. , 2004, “ Numerical Study of Natural Convection With Surface Radiation in Side-Vented Open Cavities,” Int. J. Therm. Sci., 43(9), pp. 865–876. [CrossRef]
Jaballah, S. , Sammouda, H. , and Belghith, A. , 2007, “ Effect of Surface Radiation on the Natural-Convection Stability in a Two-Dimensional Enclosure With Diffusely Emitting Boundary Walls,” Numer. Heat Transfer A, 51(5), pp. 495–516. [CrossRef]
Bahlaoui, A. , Raji, A. , El Ayachi, R. , Hasnaoui, M. , Lamsaadi, M. , and Nami, M. , 2007, “ Coupled Natural Convection and Radiation in a Horizontal Rectangular Enclosure Discretely Heated From Below,” Numer. Heat Transfer A, 52(11), pp. 1027–1042. [CrossRef]
Mezrhab, A. , Bouali, H. , Amaoui, H. , and Bouzidi, M. , 2006, “ Computation of Combined Natural-Convection and Radiation Heat-Transfer in a Cavity Having a Square Body at Its Center,” Appl. Energy, 83(9), pp. 1004–1023. [CrossRef]
Mondal, B. , and Mishra, S. C. , 2009, “ Simulation of Natural Convection in the Presence of Volumetric Radiation Using the Lattice Boltzmann Method,” Numer. Heat Transfer A, 55(1), pp. 18–41. [CrossRef]
Mondal, B. , and Li, X. , 2010, “ Effect of Volumetric Radiation on Natural Convection in a Square Cavity Using Lattice Boltzmann Method With Non Uniform Lattices,” Int. J. Heat Mass Transfer, 53(21–22), pp. 4935–4948. [CrossRef]
Banda, M. K. , Klar, A. , and Seaid, M. , 2007, “ A Lattice-Boltzmann Relaxation Scheme for Coupled Convection–Radiation Systems,” J. Comput. Phys., 226(2), pp. 1408–1431. [CrossRef]
Tan, Z. , and Howell, J. R. , 1991, “ Combined Radiation and Natural Convection in a Two-Dimensional Participating Square Medium,” Int. J. Heat Mass Transfer, 34(3), pp. 785–793. [CrossRef]
D’Orazio, A. , Corcione, M. , and Piero Celata, G. , 2004, “ Application to Natural Convection Enclosed Flows of a Lattice Boltzmann BGK Model Coupled With a General Purpose Thermal Boundary Condition,” Int. J. Therm. Sci., 43(6), pp. 575–586. [CrossRef]
Succi, S. , 2001, Lattice Boltzmann Method for Fluid Dynamics and Beyond, Oxford University Press, New York.
Benzi, R. , Succi, S. , and Vergassola, M. , 1992, “ The Lattice Boltzmann Equation: Theory and Applications,” Phys. Rep., 222(3), pp. 145–197. [CrossRef]
Chen, S. , and Doolen, G. D. , 1998, “ Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech., 30(1), pp. 329–364. [CrossRef]
Chaabane, R. , Askri, F. , and Nasrallah, S. B. , 2010, “ Numerical Modelling of Boundary Conditions for Two Dimensional Conduction Heat Transfer Equation Using Lattice Boltzmann Method,” Int. J. Heat Technol., 28(2), pp. 53–60.
He, X. , and Luo, L.-S. , 1997, “ Lattice Boltzmann Model for the Incompressible Navier–Stokes Equations,” J. Stat. Phys., 88(3), pp. 927–944. [CrossRef]
Qian, Y. H. , d’Humieres, D. , and Lallemand, P. , 1992, “ Lattice BGK Models for Navier–Stokes Equation,” Europhys. Lett., 17(6), pp. 479–484. [CrossRef]
Mohamad, A. A. , 2007, Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer, Sure Print, Calgary, AB, Canada.
Chaabane, R. , Askri, F. , and Nasrallah, S. B. , 2011, “ Parametric Study of Simultaneous Transient Conduction and Radiation in a Two-Dimensional Participating Medium,” Commun. Nonlinear Sci. Numer. Simul., 16(10), pp. 4006–4020. [CrossRef]
Kunnen, R. P. J. , Stevens, R. J. A. M. , Overkamp, J. , Sun, C. , van Heijst, G. F. , and Clercx, H. J. H. , 2011, “ The Role of Stewartson and Ekman Layers in Turbulent Rotating Rayleigh-Benard Convection,” J. Fluid Mech., 688, pp. 422–442.
Chaabane, R. , Askri, F. , and Nasrallah, S. B. , 2011, “ A New Hybrid Algorithm for Solving Transient Combined Conduction Radiation Heat Transfer Problems,” J. Therm. Sci., 15(3), pp. 649–662. [CrossRef]
Grissa, H. , Askri, F., Salah, M. B., and Nasrallah, S. B., 2010, “ Prediction of Radiative Heat Transfer in 3D Complex Geometries Using the Unstructured Control Volume Finite Element Method,” J. Quant. Spectrosc. Radiat. Transfer, 2, pp. 144–154. [CrossRef]
Chaabane, R. , Askri, F. , and Nasrallah, S. B. , 2011, “ Analysis of Two-Dimensional Transient Conduction-Radiation Problems in an Anisotropically Scattering Participating Enclosure Using the Lattice Boltzmann Method and the Control Volume Finite Element Method,” J. Comput. Phys. Commun., 182(7), pp. 1402–1413. [CrossRef]
Chaabane, R. , Askri, F. , and Nasrallah, S. B. , 2011, “ Application of the Lattice Boltzmann Method to Transient Conduction and Radiation Heat Transfer in Cylindrical Media,” J. Quant. Spectrosc. Radiat. Transfer, 112(12), pp. 2013–2027. [CrossRef]
Luo, K. , Ai, Q. , Yi, H.-L. , and Tan, H.-P. , 2015, “ Coupled Lattice Boltzmann and Meshless Simulation of Natural Convection in the Presence of Volumetric Radiation,” ASME J. Heat Transfer, 137(11), p. 111504. [CrossRef]
Luo, K. , Yi, H.-L. , and Tan, H.-P. , 2014, “ Coupled Radiation and Mixed Convection in an Eccentric Annulus Using the Hybrid Strategy of Lattice Boltzmann-Meshless Method,” Numer. Heat Transfer, Part B, 66(3), pp. 243–267. [CrossRef]
De Vahl Davis, G. , 1983, “ Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution,” Int. J. Numer. Methods Fluids, 3(3), pp. 249–264. [CrossRef]
Barakos, G. , Mitsoulis, E. , and Assimacopoulos, D. , 1994, “ Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models With Wall Functions,” Int. J. Numer. Methods Fluids, 18(7), pp. 695–719. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Geometry of the domain for natural convection–radiation (case 1), (b) sketch of the Rayleigh–Benard convection with radiation problem (case 2). (c) angular discretization, (d) spatial discretization in (ex, ey) plan, (e) control volume ΔVij, (f) subvolume δVij, and (g) arrangement of lattices and control volumes in the domain

Grahic Jump Location
Fig. 2

Steady-state nondimensional temperature for Ra=104, ω=0, β=1, ε=1, and (a) RC=0.0 and (b) RC=0.1 for y/Y = 1/2

Grahic Jump Location
Fig. 3

Steady-state vertical velocity component profile against y-direction at Ra = 5 × 105 for Pr = 0.71

Grahic Jump Location
Fig. 4

Temperature contours for different Rayleigh numbers and Pr = 0.71: (a) Ref. [14] and (b) present work

Grahic Jump Location
Fig. 5

The effect of the convection–radiation parameter RC on the mediane temperature for a gray participating media (a) for (x/X = 1/2) and (b) for (y/Y = 1/2)

Grahic Jump Location
Fig. 6

(a) The dimensionless steady-state isotherms Ra=5×104, ω=0, and Pr=0.71, (b) the dimensionless steady-state streamlines Ra=5×104, ω=0, and Pr=0.71, (c) the dimensionless isotherms Ra=5×104, ω=0, Pr=0.71, and RC=0.01 at different dimensionless times with (ξ1<  ξ2<  ξ3<  ξ4=∞), and (d) the dimensionless streamlines Ra=5×104, ω=0, Pr=0.71, and RC=0.01 at different dimensionless times with (ξ1<  ξ2<  ξ3<  ξ4=∞)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In