Ai,
Y.
,
Yalcin,
S. E.
,
Gu,
D.
,
Baysal,
O.
,
Baumgart,
H.
,
Qian,
S.
, and
Beskok,
A.
, 2010, “
A Low-Voltage Nano-Porous Electroosmotic Pump,” J. Colloid Interface Sci.,
350(2), pp. 465–470.

[CrossRef] [PubMed]
Jiang,
R. H.
,
Lin,
C. F.
,
Yang,
C. C.
,
Fan,
F. H.
,
Huang,
Y. C.
,
Tseng,
W.-P.
,
Cheng,
P. F.
,
Wu,
K. C.
, and
Wang,
J. H.
, 2012, “
InGaN Light-Emitting Diode With a Nanoporous/Air-Channel Structure,” Appl. Phys. Express,
6(1), p. 012103.

[CrossRef]
Kondrashova,
D.
,
Lauerer,
A.
,
Mehlhorn,
D.
,
Jobic,
H.
,
Feldhoff,
A.
,
Thommes,
M.
,
Chakraborty,
D.
,
Gommes,
C.
,
Zecevic,
J.
,
Jongh,
P.
,
Bunde,
A.
,
Kärger,
J.
, and
Valiullin,
R.
, 2017, “
Scale-Dependent Diffusion Anisotropy in Nanoporous Silicon,” Sci. Rep.,
7, p. 40207.

[CrossRef] [PubMed]
Ohba,
T.
, 2016, “
Limited Quantum Helium Transportation Through Nano-Channels by Quantum Fluctuation,” Sci. Rep.,
6(1), p. 28992.

[CrossRef] [PubMed]
Jeong,
N.
,
Choi,
D. H.
, and
Lin,
C. L.
, 2006, “
Prediction of Darcy-Forchheimer Drag for Micro-Porous Structures of Complex Geometry Using the Lattice Boltzmann Method,” J. Micromech. Microeng.,
16(10), pp. 2240–2250.

[CrossRef]
Yuranov,
I.
,
Renken,
A.
, and
Kiwi-Minsker,
L.
, 2005, “
Zeolite/Sintered Metal Fibers Composites as Effective Structured Catalyst,” Appl. Catal.,
281(55), pp. 55–60.

Kiwi-Minsker,
L.
, and
Renken,
A.
, 2005, “
Microstructured Reactors for Catalytic Reactions,” Catal. Today,
110(2), pp. 2–14.

Assis,
O. B. G.
, and
Claro,
L. C.
, 2003, “
Immobilized Lysozyme Protein on Fibrous Medium: Preliminary Results for Microfilteration Applications,” Electron. J. Biotechnol.,
6(2), epub.

Brask,
A.
,
Goranovic,
G.
,
Jensen,
M. J.
, and
Bruus,
H.
, 2005, “
A Novel Electro-Osmotic Pump Design for Nonconducting Liquids: Theoretical Analysis of Flow Rate–Pressure Characteristics and Stability,” J. Micromech. Microeng.,
15(4), pp. 883–891.

[CrossRef]
Bazant,
M. Z.
, and
Squires,
T. M.
, 2004, “
Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications,” Phys. Rev. Lett.,
92(6), p. 066101.

Oddy,
M. H.
,
Santiago,
J. G.
, and
Michelsen,
J. C.
, 2001, “
Electrokinetic Instability Micromixing,” Anal. Chem.,
73(24), pp. 5822–5832.

[CrossRef] [PubMed]
Biddiss,
E.
,
Erickson,
D.
, and
Li,
D. Q.
, 2004, “
Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows,” Anal. Chem.,
7(11), pp. 3208–3213.

[CrossRef]
Wong,
P. K.
,
Wang,
J. T.
,
Deval,
J. H.
, and
Ho,
C. M.
, 2004, “
Electrokinetics in Micro Devices for Biotechnology Applications,” IEEE/ASME Trans. Mechatronics,
9(2), pp. 366–376.

[CrossRef]
Jiang,
P. X.
,
Fan,
M. H.
,
Si,
G. S.
, and
Ren,
Z. P.
, 2001, “
Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers,” Int. J. Heat Mass Transfer,
44(5), pp. 1039–1051.

[CrossRef]
Mahdavi,
M.
,
Saffar-Avval,
M.
,
Tiari,
S.
, and
Mansoori,
Z.
, 2014, “
Entropy Generation and Heat Transfer Numerical Analysis in Pipes Partially Filled With Porous Medium,” Int. J. Heat Mass Transfer,
79, pp. 496–506.

[CrossRef]
Rong,
F.
,
Zhang,
W.
,
Shi,
B.
, and
Guo,
Z.
, 2014, “
Numerical Study of Heat Transfer Enhancement in a Pipe Filled With Porous Media by Axisymmetric TLB Model Based on GPU,” Int. J. Heat Mass Transfer,
70, pp. 1040–1049.

[CrossRef]
Buonomo,
B.
,
Manca,
O.
, and
Lauriat,
G.
, 2014, “
Forced Convection in Micro-Channels Filled With Porous Media in Local Thermal Non-Equilibrium Conditions,” Int. J. Therm. Sci.,
77, pp. 206–222.

[CrossRef]
Shokouhmand,
H.
,
Meghdadi Isfahani,
A. H.
, and
Shirani,
E.
, 2010, “
Friction and Heat Transfer Coefficient in Micro and Nano Channels Filled With Porous Media for Wide Range of Knudsen Number,” Int. Commun. Heat Mass Transfer,
37(7), pp. 890–894.

[CrossRef]
Karniadakis,
G.
,
Beskok,
A.
, and
Aluru,
N.
, 2005, Microflows and Nanoflows Fundamentals and Simulation,
Springer,
New York.

Abolfazli Esfahani,
J.
, and
Norouzi,
A.
, 2014, “
Two Relaxation Time Lattice Boltzmann Model for Rarefied Gas Flows,” Physica A,
393, pp. 51–61.

[CrossRef]
Liu,
X.
, and
Guo,
Z.
, 2013, “
A Lattice Boltzmann Study of Gas Flows in a Long Micro-Channel,” Comput. Math. Appl.,
65(2), pp. 186–193.

[CrossRef]
Gokaltun,
S.
, and
Dulikravich,
G. S.
, 2014, “
Lattice Boltzmann Method for Rarefied Channel Flows With Heat Transfer,” Int. J. Heat Mass Transfer,
78, pp. 796–804.

[CrossRef]
Islam,
M. S.
,
Caulkin,
R.
,
Jia,
X.
,
Fairweather,
M.
, and
Williams,
R. A.
, 2012, “
Prediction of the Permeability of Packed Beds of Non-Spherical Particles,” Comput. Aided Chem. Eng.,
30, pp. 1088–1092.

Lopez,
P.
, and
Bayazitoglu,
Y.
, 2013, “
An Extended Thermal Lattice Boltzmann Model for Transition Flow,” Int. J. Heat Mass Transfer,
65, pp. 374–380.

[CrossRef]
Chikatamarla,
S. S.
, and
Karlin,
I. V.
, 2006, “
Entropy and Galilean Invariance of Lattice Boltzmann Theories,” Phys. Rev. Lett.,
97(19), p. 190601.

[CrossRef] [PubMed]
Ansumali,
S.
,
Karlin,
I. V.
,
Arcidiacono,
S.
,
Abbas,
A.
, and
Prasianakis,
N. I.
, 2007, “
Hydrodynamics Beyond Navier–Stokes: Exact Solution to the Lattice Boltzmann Hierarchy,” Phys. Rev. Lett.,
98(12), p. 124502.

[CrossRef] [PubMed]
Kim,
S. H.
,
Pitsch,
H. P.
, and
Boyd,
I. D.
, 2008, “
Accuracy of Higher-Order Lattice Boltzmann Methods for Microscale Flows With Finite Knudsen Numbers,” J. Comput. Phys.,
227(19), pp. 8655–8671.

[CrossRef]
Zhang,
Y. H.
,
Gu,
X. J.
,
Barber,
R. W.
, and
Emerson,
D. R.
, 2006, “
Capturing Knudsen Layer Phenomena Using a Lattice Boltzmann Model,” Phys. Rev. E.,
74(4), p. 046704.

[CrossRef]
Tang,
G. H.
,
Zhang,
Y. H.
, and
Emerson,
D. R.
, 2008, “
Lattice Boltzmann Models for Nonequilibrium Gas Flows,” Phys. Rev. E.,
77(4), p. 046701.

[CrossRef]
Tang,
G. H.
,
Zhang,
Y. H.
,
Gu,
X. J.
, and
Emerson,
D. R.
, 2008, “
Lattice Boltzmann Modeling Knudsen Layer Effect in Non-Equilibrium Flows,” EPL,
83(4), p. 40008.

[CrossRef]
Homayoon,
A.
,
Meghdadi Isfahani,
A. H.
,
Shirani,
E.
, and
Ashrafizadeh,
M.
, 2011, “
A Novel Modified Lattice Boltzmann Method for Simulation of Gas Flows in Wide Range of Knudsen Number,” Int. Commun. Heat Mass Transfer,
38(6), pp. 827–832.

[CrossRef]
Shokouhmand,
H.
, and
Meghdadi Isfahani,
A. H.
, 2011, “
An Improved Thermal Lattice Boltzmann Model for Rarefied Gas Flows in Wide Range of Knudsen Number,” Int. Commun. Heat Mass Transfer,
38(10), pp. 1463–1469.

[CrossRef]
Zhuo,
C.
, and
Zhong,
C.
, 2013, “
Filter-Matrix Lattice Boltzmann Model for Microchannel Gas Flows,” Phys. Rev. E,
88(5), p. 053311.

[CrossRef]
Liou,
T.-M.
, and
Lin,
C.-T.
, 2013, “
Study on Microchannel Flows With a Sudden Contraction–Expansion at a Wide Range of Knudsen Number Using Lattice Boltzmann Method,” Microfluid. Nanofluid.,
16(1), pp. 315–327.

Li,
Q.
,
He,
Y. L.
,
Tang,
G. H.
, and
Tao,
W. Q.
, 2011, “
Lattice Boltzmann Modeling of Microchannel Flows in the Transition Flow Regime,” Microfluid. Nanofluid.,
10(3), pp. 607–618.

[CrossRef]
Kalarakis,
A. N.
,
Michalis,
V. K.
,
Skouras,
E. D.
, and
Burganos,
V. N.
, 2012, “
Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media,” Transp. Porous Media,
94(1), pp. 385–398.

[CrossRef]
Jin,
Y.
,
Uth,
M. F.
, and
Kuznetsov,
A. V.
, 2015, “
Numerical Investigation of the Possibility of Macroscopic Turbulence in Porous Media: A Direct Numerical Simulation Study,” J. Fluid Mech.,
766, pp. 76–103.

[CrossRef]
Uth,
M. F.
,
Jin,
Y.
, and
Kuznetsov,
A. V.
, 2016, “
A Direct Numerical Simulation Study on the Possibility of Macroscopic Turbulence in Porous Media: Effects of Different Solid Matrix Geometries, Solid Boundaries, and Two Porosity Scales,” Phys. Fluids,
28(6), p. 065101.

[CrossRef]
Klinkenberg,
L. J.
, 1941, “
The Permeability of Porous Media to Liquids and Gases,” Drilling and Productions Practices,
American Petroleum Institute,
New York.

Scheidegger,
A. E.
, 1972, The Physics of Flow Through Porous Media, 3rd ed.,
University of Toronto Press,
Toronto, ON, Canada.

Peng,
Y.
, 2005, “
Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics,” Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA.

Cercignani,
C.
, 1988, The Boltzmann Equations and Its Applications,
Springer-Verlag,
New York.

He,
X. Y.
,
Chen,
S. Y.
, and
Doolen,
G. D.
, 1998, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit,” J. Comput. Phys.,
146(1), pp. 282–300.

[CrossRef]
Succi,
S.
, 2001, The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond,
Oxford University Press, Oxford, UK.

Succi,
S.
, 2002, “
Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces With Heterogeneous Catalysis,” J. Phys. Rev. Lett.,
89(6), p. 064502.

[CrossRef]
Lim,
C. Y.
,
Shu,
C.
,
Niu,
X. D.
, and
Chew,
Y. T.
, 2002, “
Application of Lattice Boltzmann Method to Simulate Microchannel Flows,” J. Phys. Fluids.,
14(7), pp. 2299–2308.

[CrossRef]
Verhaeghe,
F.
,
Luo,
L. S.
, and
Blanpain,
B.
, 2009, “
Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Regime,” J. Comput. Phys.,
228(1), pp. 147–157.

[CrossRef]
Pan,
C.
,
Luo,
L. S.
, and
Miller,
C. T.
, 2006, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation,” Comput. Fluids,
35(8–9), pp. 898–909.

[CrossRef]
Tang,
G. H.
,
Tao,
W. Q.
, and
He,
Y. L.
, 2005, “
Gas Slippage Effect on Microscale Porous Flow Using the Lattice Boltzmann Method,” Phys. Rev. E,
72(5), p. 056301.

[CrossRef]
Ergun,
S.
, 1952, “
Fluid Flow Through Packed Columns,” Chem. Eng. Prog.,
48(2), pp. 89–94.

Bear,
J.
, 1972, Dynamic of Fluids in Porous Media,
Elsevier,
Amsterdam, The Netherlands.

Niu,
X. D.
,
Chew,
Y. T.
, and
Shu,
C.
, 2004, “
A Lattice Boltzmann BGK Model for Simulation of Micro Flows,” Europhys. Lett.,
67(4), p. 600.

[CrossRef]
Niu,
X. D.
,
Shu,
C.
, and
Chew,
Y. T.
, 2007, “
A Thermal Lattice Boltzmann Model With Diffuse Scattering Boundary Condition for Micro Thermal Flows,” Comput. Fluids,
36(2), pp. 273–281.

[CrossRef]
Hadjiconstantinou,
N. G.
, and
Simek,
O.
, 2002, “
Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels,” ASME J. Heat Transfer,
124(2), pp. 356–364.

[CrossRef]