0
Research Papers: Heat and Mass Transfer

Application of Houston's Method to the Calculation of the Direction-Dependent Thermal Conductivity in Finite Crystals at Low Temperatures

[+] Author and Article Information
M. Kazan

Department of Physics,
American University of Beirut,
P.O. Box 11-0236,
Riad El-Solh,
Beirut 1107-2020, Lebanon
e-mail: mk140@aub.edu.lb

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received November 8, 2016; final manuscript received April 21, 2017; published online June 1, 2017. Assoc. Editor: Alan McGaughey.

J. Heat Transfer 139(10), 102004 (Jun 01, 2017) (9 pages) Paper No: HT-16-1727; doi: 10.1115/1.4036601 History: Received November 08, 2016; Revised April 21, 2017

This paper presents significant advances in the analytical calculation of the low-temperature lattice thermal conductivity in finite crystals. It shows that an accurate prediction of the direction-dependent lattice thermal conductivity can be obtained at low temperatures when Houston's method is used to account for the anisotropy of the Brillouin zone in the calculation of the phonon spectrum. It also provides an approach to predict from a spatial-dependent Boltzmann equation the rate at which phonons are scattered by the sample boundary in the presence of intrinsic scattering mechanisms, which is crucial for the calculation of the lattice thermal conductivity in finite crystals.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Carruthers, P. , 1961, “ Theory of Thermal Conductivity of Solids at Low Temperatures,” Rev. Mod. Phys., 33(1), pp. 92–138. [CrossRef]
Klemens, P. G. , 1961, “ Anharmonic Attenuation of Localized Lattice Vibrations,” Phys. Rev., 122(2), pp. 443–445. [CrossRef]
Peirels, R. E. , 1955, Quantum Theory of Solids, Oxford University Press, Oxford, UK.
Srivastava, G. P. , 1990, The Physics of Phonons, Taylor & Francis Group, New York.
Gonze, X. , and Vigneron, J.-P. , 1989, “ Density-Functional Approach to Nonlinear-Response Coefficients of Solids,” Phys. Rev. B, 39(18), p. 13120. [CrossRef]
Baroni, S. , De Gironcoli, S. , Dal Corso, A. , and Giannozi, P. , 2001, “ Phonons and Related Crystal Properties From Density-Functional Perturbation Theory,” Rev. Mod. Phys., 73(2), pp. 515–562. [CrossRef]
Broido, D. A. , Malorny, M. , Birner, G. , Mingo, N. , and Stewart, D. A. , 2007, “ Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles,” Appl. Phys. Lett., 91(23), p. 231922. [CrossRef]
Protik, N. H. , Carrete, J. , Katcho, N. A. , Mingo, N. , and Broido, D. , 2016, “ Ab Initio Study of the Effect of Vacancies on the Thermal Conductivity of Boron Arsenide,” Phys. Rev. B, 94(4), p. 045207. [CrossRef]
Callaway, J. , 1959, “ Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev., 113(4), pp. 1046–1051. [CrossRef]
Holland, M. G. , 1963, “ Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132(6), pp. 2461–2471. [CrossRef]
Asen-Palmer, M. , Bartkowski, K. , Gmelin, E. , Cardona, M. , Zhernov, A. P. , Inyushkin, A. V. , Taldenkov, A. , Ozhogin, V. I. , Itoh, K. M. , and Haller, E. E. , 1997, “ Thermal Conductivity of Germanium Crystals With Different Isotopic Compositions,” Phys. Rev. B, 56(15), pp. 9431–9447. [CrossRef]
Morelli, D. T. , Heremans, J. P. , and Slack, G. A. , 2002, “ Estimation of the Isotope Effect on the Lattice Thermal Conductivity of Group IV and Group III-V Semiconductors,” Phys. Rev. B, 66(19), p. 195304. [CrossRef]
Kazan, M. , Pereira, S. , Correia, M. R. , and Masri, P. , 2008, “ Contribution of the Decay of Optical Phonons Into Acoustic Phonons to the Thermal Conductivity of AlN,” Phys. Rev. B, 77(18), p. 180302(R). [CrossRef]
Kazan, M. , Pereira, S. , Coutinho, J. , Correia, M. R. , and Masri, P. , 2008, “ Role of Optical Phonon in Ge Thermal Conductivity,” Appl. Phys. Lett., 92(21), p. 211903. [CrossRef]
Alameh, Z. , and Kazan, M. , 2012, “ Predictive Calculation of the Lattice Thermal Conductivity With Temperature-Dependent Vibrational Parameters,” J. Appl. Phys., 112(12), p. 123506. [CrossRef]
Maldovin, M. , 2011, “ Micro-to-Nano Scale Thermal Energy Conduction in Semiconductor Thin Films,” J. Appl. Phys., 110(3), p. 034308. [CrossRef]
Jeong, C. , Datta, S. , and Lundstrom, M. , 2012, “ Thermal Conductivity of Bulk and Thin-Film Silicon: A Landauer Approach,” J. Appl. Phys., 111(9), p. 093708. [CrossRef]
Maznev, A. A. , 2015, “ Boundary Scattering of Phonons: Specularity of a Randomly Rough Surface in the Small Perturbation Limit,” Phys. Rev. B, 91(13), p. 134306. [CrossRef]
Park, M. , Lee, I.-H. , and Kim, Y.-S. , 2014, “ Lattice Thermal Conductivity of Crystalline and Amorphous Silicon With and Without Isotopic Effects From the Ballistic to Diffusive Thermal Transport Regime,” J. Appl. Phys., 116(4), p. 043514. [CrossRef]
Houston, W. V. , 1948, “ Normal Vibrations of a Crystal Lattice,” Rev. Mod. Phys., 20(1), pp. 161–165. [CrossRef]
Bhatia, A. B. , and Horton, G. K. , 1955, “ Vibration Spectra and Specific Heats of Cubic Metals. II. Application to Silver,” Phys. Rev., 98(6), pp. 1715–1721. [CrossRef]
Betts, D. D. , Bhatia, A. B. , and Wyman, M. , 1956, “ Houston's Method and Its Application to the Calculation of Characteristic Temperatures of Cubic Crystals,” Phys. Rev., 104(1), pp. 37–42. [CrossRef]
Kazan, M. , and Volz, S. , 2014, “ Calculation of the Lattice Thermal Conductivity in Granular Crystals,” J. Appl. Phys., 115(7), p. 073509. [CrossRef]
Cahill, D. G. , Watanabe, F. , and Rockett, A. , 2005, “ Thermal Conductivity of Epitaxial Layers of Dilute SiGe Alloys,” Phys. Rev. B, 71(23), p. 235202. [CrossRef]
AlShaikhi, A. , and Srivastava, G. P. , 2007, “ Theoretical Investigations of Phonon Intrinsic Mean-Free Path in Zinc-Blende and Wurtzite AlN,” Phys. Rev. B, 76(19), p. 195205. [CrossRef]
Zhang, Z. , 2007, Nano/Microscale Heat Transfer, McGraw-Hill, New York.
Kazan, M. , Guisbiers, G. , Pereira, S. , Correia, M. R. , Masri, P. , Bruyant, A. , Volz, S. , and Royer, P. , 2010, “ Thermal Conductivity of Silicon Bulk and Nanowires: Effects of Isotopic Composition, Phonon Confinement, and Surface Roughness,” J. Appl. Phys., 107(8), p. 083503. [CrossRef]
Casimir, H. B. G. , 1938, “ Note on the Conduction of Heat in Crystals,” Physica, 5(6), pp. 495–500. [CrossRef]
Allen, P. B. , 2013, “ Improved Callaway Model for Lattice Thermal Conductivity,” Phys. Rev. B, 88(14), p. 144302. [CrossRef]
Kazan, M. , 2011, “ Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice,” ASME J. Heat Transfer, 133(11), p. 112401. [CrossRef]
Ruf, T. , Henn, R. W. , Asen-Palmer, M. , Gmelin, E. , Cardona, M. , Pohl, H.-J. , Devyatych, G. G. , and Sennikov, P. G. , 2000, “ Thermal Conductivity of Isotopically Enriched Silicon,” Solid State Commun., 115(5), pp. 243–247. [CrossRef]
Etchegoin, P. , Weber, J. , Cardona, M. , Hansen, W. L. , Itoh, K. , and Haller, E. E. , 1992, “ Isotope Effect in Ge: A Photoluminescence Study,” Solid State Commun., 83(11), pp. 843–848. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Longitudinal and transverse temperature-dependent Debye temperature in the six considered symmetry directions

Grahic Jump Location
Fig. 2

Phonon spectrum of Si. Symbols: first principles calculations. Solid lines: Debye spectrum calculated with the different expressions for the phonon spectrum in Eq. (9). Inset: the part of the density of states where Houston's method gives a satisfactory agreement with the density functional theory calculations. Because the various expressions for the density of states derived with Houston's method are to a large extent equivalent to each other, the difference between the plots of these expressions is not very clear even with a zoomed plot.

Grahic Jump Location
Fig. 3

Thermal conductivities of [001]-oriented Si and [113]-oriented Ge. Symbols: experimental data (data for Si are obtained from Ref. [31] and data for Ge are obtained from Refs. [11] and [32]). Solid lines: model results obtained by considering the different expressions for the phonon spectrum in Eq. (9).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In