0
Technical Brief

Effect of Thermal Conductivity Ratio on Laminar Double-Diffusive Free Convection in a Porous Cavity

[+] Author and Article Information
Paulo H. S. Carvalho

Departamento de Energia—IEME,
Instituto Tecnológico de Aeronáutica—ITA,
São José dos Campos, SP 12228-900, Brazil

Marcelo J. S. de Lemos

Fellow ASME
Departamento de Energia—IEME,
Instituto Tecnológico de Aeronáutica—ITA,
São José dos Campos, SP 12228-900, Brazil
e-mail: delemos@ita.br

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 28, 2016; final manuscript received April 20, 2017; published online June 1, 2017. Assoc. Editor: Antonio Barletta.

J. Heat Transfer 139(10), 104506 (Jun 01, 2017) (4 pages) Paper No: HT-16-1696; doi: 10.1115/1.4036617 History: Received October 28, 2016; Revised April 20, 2017

This work presents a study on double-diffusive free convection in a porous square cavity using the thermal equilibrium model. Transport equations are discretized using the control-volume method, and the system of algebraic equations is relaxed via the SIMPLE algorithm. The effect of ks/kf on average Nusselt and Sherwood values was investigated. Results show that increasing ks/kf affects Nuw and Shw boosting mass transfer at the expense of reducing overall heat transport across the enclosure.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nield, D. A. , and Bejan, A. , 2017, Convection in Porous Media, 5th ed., Springer, New York.
Ingham, D. B. , and Pop, I. , 1998, Transport Phenomena in Porous Media, Elsevier, Amsterdam, The Netherlands.
Bejan, A. , 1979, “ On the Boundary Layer Regime in a Vertical Enclosure Filled With a Porous Medium,” Lett. Heat Mass Transfer, 6(2), pp. 93–102. [CrossRef]
Manole, D. M. , and Lage, J. L. , 1992, “ Numerical Benchmark Results for Natural Convection in a Porous Medium Cavity,” Heat and Mass Transfer in Porous Media, Vol. HTD-216, ASME, New York, pp. 55–60.
Trevisan, O. V. , and Bejan, A. , 1985, “ Natural Convection With Combined Heat and Mass Transfer Buoyancy Effects in a Porous Medium,” Int. J. Heat Mass Transfer, 28(8), pp. 1597–1611. [CrossRef]
Trevisan, O. V. , and Bejan, A. , 1986, “ Mass and Heat Transfer by Natural Convection in a Vertical Slot Filled With Porous Medium,” Int. J. Heat Mass Transfer, 29(3), pp. 403–415. [CrossRef]
Goyeau, B. , Songbe, J. P. , and Gobin, D. , 1996, “ Numerical Study of Double-Diffusive Natural Convection in a Porous Cavity Using the Darcy-Brinkman Formulation,” Int. J. Heat Mass Transfer, 39(7), pp. 1363–1378. [CrossRef]
Bennacer, R. , Tobbal, A. , Beji, H. , and Vasseur, P. , 2001, “ Double Diffusive Convection in a Vertical Enclosure Filled With Anisotropic Porous Media,” Int. J. Therm. Sci., 40(1), pp. 30–41. [CrossRef]
Chen, S. , Tölke, J. , and Krafczyk, M. , 2010, “ Numerical Investigation of Double-Diffusive (Natural) Convection in Vertical Annuluses With Opposing Temperature and Concentration Gradients,” Int. J. Heat Fluid Flow, 31(2), pp. 217–226. [CrossRef]
Chen, S. , Liu, H. , and Zheng, C. , 2012, “ Numerical Study of Turbulent Double-Diffusive Natural Convection in a Square Cavity by LES-Based Lattice Boltzmann Model,” Int. J. Heat Mass Transfer, 55(17–18), pp. 4862–4870. [CrossRef]
Bhadauria, B. , 2012, “ Double-Diffusive Convection in a Saturated Anisotropic Porous Layer With Internal Heat Source,” Transp. Porous Media, 92(2), pp. 299–320. [CrossRef]
Malashetty, M. S. , Pop, I. , Kollu, P. , and Sidram, W. , 2012, “ Soret Effect on Double Diffusive Convection in a Darcy Porous Medium Saturated With a Couple Stress Fluid,” Int. J. Therm. Sci., 53, pp. 130–140. [CrossRef]
Yadav, D. , Agrawal, G. S. , and Bhargava, R. , 2013, “ Onset of Double-Diffusive Nanofluid Convection in a Layer of Saturated Porous Medium With Thermal Conductivity Ratio and Viscosity Variation,” J. Porous Media, 16(2), pp. 105–121. [CrossRef]
de Lemos, M. J. S. , 2012, Turbulence in Porous Media: Modeling and Applications, 2nd ed., Elsevier, Amsterdam, Netherlands.
Braga, E. J. , and de Lemos, M. J. S. , 2004, “ Turbulent Natural Convection in a Porous Square Cavity Computed With a Macroscopic k-ε Model,” Int. J. Heat Mass Transfer, 47(26), pp. 5639–5650. [CrossRef]
Saito, M. B. , and de Lemos, M. J. S. , 2005, “ Interfacial Heat Transfer Coefficient for Non-Equilibrium Convective Transport in Porous Media,” Int. Commun. Heat Mass Transfer, 32(5), pp. 666–676. [CrossRef]
Saito, M. B. , and de Lemos, M. J. S. , 2006, “ A Correlation for Interfacial Heat Transfer Coefficient for Turbulent Flow Over an Array of Square Rods,” ASME J. Heat Transfer, 128(5), pp. 444–452. [CrossRef]
Krishnan, S. , Murthy, J. Y. , and Garimella, S. V. , 2004, “ A Two-Temperature Model for the Analysis of Passive Thermal Control Systems,” ASME J. Heat Transfer, 126(4), pp. 628–637. [CrossRef]
Carvalho, P. H. S. , and de Lemos, M. J. S. , 2013, “ Turbulent Free Convection in a Porous Square Cavity Using the Thermal Equilibrium Model,” Int. Commun. Heat Mass Transfer, 49, pp. 10–16. [CrossRef]
Carvalho, P. H. S. , and de Lemos, M. J. S. , 2014, “ Passive Laminar Heat Transfer Across Porous Cavities Using the Thermal Non-Equilibrium Model,” Numer. Heat Transfer Part A, 66(11), pp. 1173–1194. [CrossRef]
Carvalho, P. H. S. , and de Lemos, M. J. S. , 2014, “ Turbulent Free Convection in a Porous Cavity Using the Two-Temperature Model and the High Reynolds Closure,” Int. J. Heat Mass Transfer, 79, pp. 105–115. [CrossRef]
Tofaneli, L. A. , and de Lemos, M. J. S. , 2009, “ Double-Diffusive Turbulent Natural Convection in a Porous Square Cavity With Opposing Temperature and Concentration Gradients,” Int. Commun. Heat Mass Transfer, 36(10), pp. 991–995. [CrossRef]
Gray, W. G. , and Lee, P. C. Y. , 1977, “ On the Theorems for Local Volume Averaging of Multiphase System,” Int. J. Multiphase Flow, 3(4), pp. 333–340. [CrossRef]
Alazmi, B. , and Vafai, K. , 2000, “ Analysis of Variants Within the Porous Media Transport Models,” ASME J. Heat Transfer, 122(2), pp. 303–326. [CrossRef]
Patankar, S. V. , 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
Stone, H. L. , 1968, “ Iterative Solution of Implicit Approximations of Multi-Dimensional Partial Differential Equations,” SIAM J. Numer. Anal., 5(3), pp. 530–558. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Effects of ks/kf for aiding drive, ϕ = 0.8, Da = 10−7, Le = 1, and N = 10 on (a) Nuw, (b) Shw, and (c) v/V0 at X* = 0.003

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In