Research Papers: Evaporation, Boiling, and Condensation

Effects of Interface Velocity, Diffusion Rate, and Radial Velocity on Colloidal Deposition Patterns Left by Evaporating Droplets

[+] Author and Article Information
Collin T. Burkhart

Mechanical Engineering,
Rochester Institute of Technology,
76 Lomb Memorial Drive,
Rochester, NY 14623
e-mail: ctb6973@rit.edu

Kara L. Maki

School of Mathematical Sciences,
Rochester Institute of Technology,
85 Lomb Memorial Drive,
Rochester, NY 14623
e-mail: kmaki@rit.edu

Michael J. Schertzer

Mechanical Engineering,
Rochester Institute of Technology,
76 Lomb Memorial Drive,
Rochester, NY 14623
e-mail: mjseme@rit.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 8, 2016; final manuscript received April 11, 2017; published online June 21, 2017. Assoc. Editor: C. A. Dorao.

J. Heat Transfer 139(11), 111505 (Jun 21, 2017) (9 pages) Paper No: HT-16-1645; doi: 10.1115/1.4036681 History: Received October 08, 2016; Revised April 11, 2017

This investigation experimentally examines the role of interface capture on the transport and deposition of colloidal material in evaporating droplets. It finds that deposition patterns cannot be characterized by the ratio of interface velocity to particle diffusion rate alone when the two effects are of the same order. Instead, the ratio of radial velocity to particle diffusion rate should also be considered. Ring depositions are formed when the ratio of radial velocity to the particle diffusion rate is greater than the ratio of interface velocity to diffusion. Conversely, uniform depositions occur when the ratio of radial velocity to diffusion is smaller than the ratio of interface velocity to diffusion. Transitional depositions with a ring structure and nonuniform central deposition are observed when these ratios are similar in magnitude. Since both ratios are scaled by diffusion rate, it is possible to characterize the depositions here using a ratio of interface velocity to radial velocity. Uniform patterns form when interface velocity is greater than radial velocity and ring patterns form when radial velocity is larger. However, Marangoni effects are small and Derjaguin, Landau, Verwey, and Overbeek (DLVO) forces repel particles from the surface in these cases. Further research is required to determine if these conclusions can be extended or modified to describe deposition patterns when particles are subjected to appreciable Marangoni recirculation and attractive DLVO forces.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


McHale, G. , 2007, “ Surface Free Energy and Microarray Deposition Technology,” Analyst, 132(3), pp. 192–195. [CrossRef] [PubMed]
Ragoonanan, V. , and Aksan, A. , 2008, “ Heterogeneity in Desiccated Solutions: Implications for Biostabilization,” Biophys. J., 94(6), pp. 2212–2227. [CrossRef] [PubMed]
Gulka, C. P. , Swartz, J. D. , Trantum, J. R. , Davis, K. M. , Peak, C. M. , Denton, A. J. , Haselton, F. R. , and Wright, D. W. , 2014, “ Coffee Rings as Low-Resource Diagnostics: Detection of the Malaria Biomarker Plasmodium Falciparum Histidine-Rich Protein-II Using a Surface-Coupled Ring of Ni(II)NTA Gold-Plated Polystyrene Particles,” ACS Appl. Mater. Interfaces, 6(9), pp. 6257–6263. [CrossRef] [PubMed]
Trantum, J. R. , Wright, D. W. , and Haselton, F. R. , 2012, “ Biomarker-Mediated Disruption of Coffee-Ring Formation as a Low Resource Diagnostic Indicator,” Langmuir, 28(4), pp. 2187–2193. [CrossRef] [PubMed]
Wen, J. T. , Ho, C. M. , and Lillehoj, P. B. , 2013, “ Coffee Ring Aptasensor for Rapid Protein Detection,” Langmuir, 29(26), pp. 8440–8446. [CrossRef] [PubMed]
Park, J. , and Moon, J. , 2006, “ Control of Colloidal Particle Deposit Patterns Within Picoliter Droplets,” Langmuir, 22(8), pp. 3506–3513. [CrossRef] [PubMed]
Chen, Y. , Müller, J. D. , So, P. T. , and Gratton, E. , 1999, “ The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy,” Biophys. J., 77(1), pp. 553–567. [CrossRef] [PubMed]
Bellido, E. , Ojea-Jiménez, I. , Ghirri, A. , Alvino, C. , Candini, A. , Puntes, V. , Affronte, M. , Domingo, N. , and Ruiz-Molina, D. , 2012, “ Controlled Positioning of Nanoparticles on Graphene by Noninvasive AFM Lithography,” Langmuir, 28(33), pp. 12400–12409. [CrossRef] [PubMed]
Orejon, D. , Sefiane, K. , and Shanahan, M. E. R. , 2011, “ Stick-Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration,” Langmuir, 27(21), pp. 12834–12843. [CrossRef] [PubMed]
Corkidi, G. , Montoya, F. , Cruz, G. H. , and Vargas, M. , 2016, “ Evaporation Dynamics and Sedimentation Pattern of a Sessile Particle Laden Water Droplet,” Exp. Fluids, 57(6), pp. 1–11. [CrossRef]
Saha, A. , Basu, S. , and Kumar, R. , 2012, “ Particle Image Velocimetry and Infrared Thermography in a Levitated Droplet With Nanosilica Suspensions,” Exp. Fluids, 52(3), pp. 795–807. [CrossRef]
Bromberg, V. , Ma, S. , and Singler, T. J. , 2013, “ High-Resolution Inkjet Printing of Electrically Conducting Lines of Silver Nanoparticles by Edge-Enhanced Twin-Line Deposition,” Appl. Phys. Lett., 102(21), p. 214101. [CrossRef]
Bromberg, V. , Ma, S. , Egitto, F. D. , and Singler, T. J. , 2013, “ Highly Conductive Lines by Plasma-Induced Conversion of Inkjet-Printed Silver Nitrate Traces,” J. Mater. Chem. C, 1(41), pp. 6842–6849. [CrossRef]
Layani, M. , Gruchko, M. , Milo, O. , Balberg, I. , Azulay, D. , and Magdassi, S. , 2009, “ Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature,” ACS Nano, 3(11), pp. 3537–3542. [CrossRef] [PubMed]
Morales, V. L. , Parlange, J. , Wu, M. , Perez-Reche, F. J. , Zhang, W. , Sang, W. , and Steenhuis, T. S. , 2013, “ Surfactant-Mediated Control of Colloid Pattern Assembly and Attachment Strength in Evaporating Droplets,” Langmuir, 29(6), pp. 1831–1840. [CrossRef] [PubMed]
Hu, H. , and Larson, R. G. , 2006, “ Marangoni Effect Reverses Coffee-Ring Depositions,” J. Phys. Chem. B, 110(14), pp. 7090–7094. [CrossRef] [PubMed]
Weon, B. M. , and Je, J. H. , 2013, “ Fingering Inside the Coffee Ring,” Phys. Rev. E, 87(1), p. 013003. [CrossRef]
Cui, L. , Zhang, J. , Zhang, X. , Li, Y. , Wang, Z. , Gao, H. , Wang, T. , Zhu, S. , Yu, H. , and Yang, B. , 2012, “ Avoiding Coffee Ring Structure Based on Hydrophobic Silicon Pillar Arrays During Single-Drop Evaporation,” Soft Matter, 8(40), pp. 10448–10456. [CrossRef]
Yunker, P. J. , Still, T. , Lohr, M. A. , and Yodh, A. G. , 2011, “ Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions,” Nature, 476(7360), pp. 308–311. [CrossRef] [PubMed]
Eral, H. B. , Augustine, D. M. , Duits, M. H. G. , and Mugele, F. , 2011, “ Suppressing the Coffee Stain Effect: How to Control Colloidal Self-Assembly in Evaporating Drops Using Electrowetting,” Soft Matter, 7(10), pp. 4954–4958. [CrossRef]
Mampallil, D. , Eral, H. B. , van den Ende, D. , and Mugele, F. , 2012, “ Control of Evaporating Complex Fluids Through Electrowetting,” Soft Matter, 8(41), pp. 10614–4958. [CrossRef]
Orejon, D. , Sefiane, K. , and Shanahan, M. E. R. , 2013, “ Evaporation of Nanofluid Droplets With Applied DC Potential,” J. Colloid Interface Sci., 407, pp. 29–38. [CrossRef] [PubMed]
Deegan, R. D. , Bakajin, O. , and Dupont, T. F. , 1997, “ Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops,” Nature, 389(6653), pp. 827–829. [CrossRef]
Deegan, R. D. , Bakajin, O. , Dupont, T. F. , Huber, G. , Nagel, S. R. , and Witten, T. A. , 2000, “ Contact Line Deposits in an Evaporating Drop,” Phys. Rev. E, 62(1B), pp. 756–765. [CrossRef]
Deegan, R. , 2000, “ Pattern Formation in Drying Drops,” Phys. Rev. E, 61(1), pp. 475–485. [CrossRef]
Hu, H. , and Larson, R. G. , 2002, “ Evaporation of a Sessile Droplet on a Substrate,” J. Phys. Chem. B, 106(6), pp. 1334–1344. [CrossRef]
Hu, H. , and Larson, R. G. , 2005, “ Analysis of the Microfluid Flow in an Evaporating Sessile Droplet,” Langmuir, 21(9), pp. 3963–3971. [CrossRef] [PubMed]
Bhardwaj, R. , Fang, X. , Somasundaran, P. , and Attinger, D. , 2010, “ Self-Assembly of Colloidal Particles From Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram,” Langmuir, 26(11), pp. 7833–7842. [CrossRef] [PubMed]
Larson, R. G. , 2014, “ Transport and Deposition Patterns in Drying Sessile Droplets,” AIChE J., 60(5), pp. 1538–1571. [CrossRef]
Kuncicky, D. M. , and Velev, O. D. , 2008, “ Surface-Guided Templating of Particle Assemblies Inside Drying Sessile Droplets,” Langmuir, 24(4), pp. 1371–1380. [CrossRef] [PubMed]
Kim, J.-H. , Ahn, S. I. , Kim, J. H. , and Zin, W.-C. , 2007, “ Evaporation of Water Droplets on Polymer Surfaces,” Langmuir, 23(11), pp. 6163–6169. [CrossRef] [PubMed]
Masoud, H. , and Felske, J. D. , 2009, “ Analytical Solution for Stokes Flow Inside an Evaporating Sessile Drop: Spherical and Cylindrical Cap Shapes,” Phys. Fluids, 21(4), pp. 1–11. [CrossRef]
Petsi, A. J. , and Burganos, V. N. , 2008, “ Stokes Flow Inside an Evaporating Liquid Line for any Contact Angle,” Phys. Rev. E, 78(3), p. 036324.
Ristenpart, W. D. , Kim, P. G. , Domingues, C. , Wan, J. , and Stone, H. A. , 2007, “ Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops,” Phys. Rev. Lett., 99(23), p. 234502.
Hurth, C. , Bhardwaj, R. , Andalib, S. , Frankiewicz, C. , Dobos, A. , Attinger, D. , and Zenhausern, F. , 2015, “ Biomolecular Interactions Control the Shape of Stains From Drying Droplets of Complex Fluids,” Chem. Eng. Sci., 137, pp. 398–403. [CrossRef]
Das, S. , Mitra, S. K. , and Chakraborty, S. , 2012, “ Wenzel and Cassie-Baxter States of an Electrolytic Drop on Charged Surfaces,” Phys. Rev. E, 86(1), p. 011603. [CrossRef]
Das, S. , Mitra, S. K. , and Chakraborty, S. , 2012, “ Ring Stains in the Presence of Electromagnetohydrodynamic Interactions,” Phys. Rev. E, 86(5), p. 056317 .
Li, Y. , Yang, Q. , Li, M. , and Song, Y. , 2016, “ Rate-Dependent Interface Capture Beyond the Coffee-Ring Effect,” Sci. Rep., 6, p. 24628. [CrossRef] [PubMed]
Maki, K. L. , and Kumar, S. , 2011, “ Fast Evaporation of Spreading Droplets of Colloidal Suspensions,” Langmuir, 27(18), pp. 11347–11363. [CrossRef] [PubMed]
Li, F. , and Mugele, F. , 2008, “ How to Make Sticky Surfaces Slippery: Contact Angle Hysteresis in Electrowetting With Alternating Voltage,” Appl. Phys. Lett., 92(24), p. 244108.
Nguyen, T. A. H. , Hampton, M. A. , and Nguyen, A. V. , 2013, “ Evaporation of Nanoparticle Droplets on Smooth Hydrophobic Surfaces: The Inner Coffee Ring Deposits,” J. Phys. Chem. C, 117(9), pp. 4707–4716. [CrossRef]
Song, H. , Lee, Y. , Jin, S. , Kim, H. Y. , and Yoo, J. Y. , 2011, “ Prediction of Sessile Drop Evaporation Considering Surface Wettability,” Microelectron. Eng., 88(11), pp. 3249–3255. [CrossRef]
Sikanen, T. , Tuomikoski, S. , Ketola, R. A. , Kostiainen, R. , Franssila, S. , and Kotiaho, T. , 2005, “ Characterization of SU-8 for Electrokinetic Microfluidic Applications,” Lab Chip, 5(8), pp. 888–896. [CrossRef] [PubMed]
Gu, Y. , and Li, D. , 2000, “ The ζ-Potential of Glass Surface in Contact With Aqueous Solutions,” J. Colloid Interface Sci., 226(2), pp. 328–339. [CrossRef]
Kolská, Z. , Makajová, Z. , Kolářová, K. , Slepičková, N. K. , Trostová, S. , Řezníčková, A. , Siegel, J. , and Švorčík, V. , 2013, “ Electrokinetic Potential and Other Surface Properties of Polymer Foils and Their Modifications,” Polymer Science, Vol. iv, F. Yιlmaz, ed., InTech, Rijeka, Croatia, pp. 203–228.
Preočanin, T. , Selmani, A. , Lindqvist-Reis, P. , Heberling, F. , Kallay, N. , and Lützenkirchen, J. , 2012, “ Surface Charge at Teflon/Aqueous Solution of Potassium Chloride Interfaces,” Colloids Surf. A, 412, pp. 120–128. [CrossRef]
Chatterjee, R. , Mitra, S. K. , and Bhattacharjee, S. , 2011, “ Particle Deposition Onto Janus and Patchy Spherical Collectors,” Langmuir, 27(14), pp. 8787–8797. [CrossRef] [PubMed]
Uno, K. , Hayashi, K. , Hayashi, T. , Ito, K. , and Kitano, H. , 1998, “ Particle Adsorption in Evaporating Droplets of Polymer Latex Dispersions on Hydrophilic and Hydrophobic Surfaces,” Colloid Polym. Sci., 276(9), pp. 810–815. [CrossRef]
Sefiane, K. , 2014, “ Patterns From Drying Drops,” Adv. Colloid Interface Sci., 206, pp. 372–381. [CrossRef] [PubMed]
Weon, B. M. , and Je, J. H. , 2013, “ Self-Pinning by Colloids Confined at a Contact Line,” Phys. Rev. Lett., 110(2), p. 028303.


Grahic Jump Location
Fig. 1

Images depicting the methodology for image analysis of (a) interface shape and (b) fluorescence intensity data

Grahic Jump Location
Fig. 2

Representative fluorescent images and radial intensity distributions for (a) 25 nm, (b) 100 nm, and (c) 1.1 μm particles on SU8

Grahic Jump Location
Fig. 4

Backlit side-view images of interface profiles of evaporating colloidal droplets at normalized times τ=0.0−0.9 on glass, polyimide, SU8, and PTFE. Vertical dashed lines indicate initial contact diameters of the droplets.

Grahic Jump Location
Fig. 5

Evolution of contact angle (θ) and normalized diameter (D/D0) for colloidal droplets containing 1.1 μm particles evaporated on (a) and (b) glass, (c) and (d) polyimide, (e) and (f) SU8, and (g) and (h) PTFE as a function of normalized time (τ). The center curves represent the mean values across all trials while the outer curves are two standard deviations above and below the mean values.

Grahic Jump Location
Fig. 3

Representative fluorescent images and radial intensity distributions for DI water droplets containing 1.1 μm particles evaporated on (a) glass, (b) polyimide, (c) SU8, and (d) PTFE. Dashed lines represent initial contact diameters.

Grahic Jump Location
Fig. 6

Phase diagram for colloidal deposition as a function of the ratios of interface and radial velocities to diffusion rate. Images of the resulting depositions for each surface particle combination are shown inset: (i) SU8 25 nm, (ii) SU8 100 nm, (iii) SU8 1.1 μm, (iv) PTFE 1.1 μm, (v) polyimide 1.1 μm, and (vi) glass 1.1 μm. Open circles indicate ring depositions, hashed circles indicate platelike depositions, and closed circles indicate uniform depositions. Data points from Li et al. [38] are similarly plotted as squares. Results for (i) and (ii) as recalculated after repinning (dashed circles).

Grahic Jump Location
Fig. 8

Ratios of interface velocity to radial velocity. Radial velocity after repinning is calculated is shown in cases where repinning was observed. Cases are enumerated as follows: (i) SU8 25 nm, (ii) SU8 100 nm, (iii) SU8 1.1 μm, (iv) PTFE 1.1 μm, (v) polyimide 1.1 μm, and (vi) glass 1.1 μm.

Grahic Jump Location
Fig. 7

Evolution of contact angle (θ) and normalized diameter (D/D0) for colloidal droplets containing (a) and (b) 25 nm, (c) and (d) 100 nm, and (e) and (f) 1.1 μm particles on SU8 as a function of normalized time (τ). The center curves represent the mean values across all trials while the outer curves are two standard deviations above and below the mean values.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In