This investigation experimentally examines the role of interface capture on the transport and deposition of colloidal material in evaporating droplets. It finds that deposition patterns cannot be characterized by the ratio of interface velocity to particle diffusion rate alone when the two effects are of the same order. Instead, the ratio of radial velocity to particle diffusion rate should also be considered. Ring depositions are formed when the ratio of radial velocity to the particle diffusion rate is greater than the ratio of interface velocity to diffusion. Conversely, uniform depositions occur when the ratio of radial velocity to diffusion is smaller than the ratio of interface velocity to diffusion. Transitional depositions with a ring structure and nonuniform central deposition are observed when these ratios are similar in magnitude. Since both ratios are scaled by diffusion rate, it is possible to characterize the depositions here using a ratio of interface velocity to radial velocity. Uniform patterns form when interface velocity is greater than radial velocity and ring patterns form when radial velocity is larger. However, Marangoni effects are small and Derjaguin, Landau, Verwey, and Overbeek (DLVO) forces repel particles from the surface in these cases. Further research is required to determine if these conclusions can be extended or modified to describe deposition patterns when particles are subjected to appreciable Marangoni recirculation and attractive DLVO forces.