0
Research Papers: Micro/Nanoscale Heat Transfer

Probing the Local Heat Transfer Coefficient of Water-Cooled Microchannels Using Time-Domain Thermoreflectance

[+] Author and Article Information
Mehrdad Mehrvand, Shawn A. Putnam

Department of Mechanical and
Aerospace Engineering,
University of Central Florida,
Orlando, FL 32816

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 14, 2016; final manuscript received March 21, 2017; published online June 21, 2017. Assoc. Editor: C. A. Dorao.

J. Heat Transfer 139(11), 112403 (Jun 21, 2017) (12 pages) Paper No: HT-16-1665; doi: 10.1115/1.4036691 History: Received October 14, 2016; Revised March 21, 2017

The demands for increasingly smaller, more capable, and higher power density technologies have heightened the need for new methods to manage and characterize extreme heat fluxes. This work presents the use of an anisotropic version of the time-domain thermoreflectance (TDTR) technique to characterize the local heat transfer coefficient (HTC) of a water-cooled rectangular microchannel in a combined hot-spot heating and subcooled channel-flow configuration. Studies focused on room temperature, single-phase, degassed water flowing at an average velocity of ≈3.5 m/s in a ≈480 μm hydraulic diameter microchannel (e.g., Re ≈ 1850), where the TDTR pump heating laser induces a local heat flux of ≈900 W/cm2 in the center of the microchannel with a hot-spot area of ≈250 μm2. By using a differential TDTR measurement approach, we show that thermal effusivity distribution of the water coolant over the hot-spot is correlated to the single-phase convective heat transfer coefficient, where both the stagnant fluid (i.e., conduction and natural convection) and flowing fluid (i.e., forced convection) contributions are decoupled from each other. Our measurements of the local enhancement in the HTC over the hot-spot are in good agreement with established Nusselt number correlations. For example, our flow cooling results using a Ti metal wall support a maximum HTC enhancement via forced convection of ≈1060 ± 190 kW/m2 K, where the Nusselt number correlations predict ≈900 ± 150 kW/m2 K.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hamada, F. N. , Rosenzweig, M. , Kang, K. , Pulver, S. R. , Ghezzi, A. , Jegla, T. J. , and Garrity, P. A. , 2008, “ An Internal Thermal Sensor Controlling Temperature Preference in Drosophila,” Nature, 454(7201), pp. 217–220. [CrossRef] [PubMed]
Garimella, S. V. , 2006, “ Advances in Mesoscale Thermal Management Technologies for Microelectronics,” Microelectron. J., 37(11), pp. 1165–1185. [CrossRef]
Waldrop, M. M. , 2016, “ The Chips are Down for Moore's Law,” Nature, 530(7589), pp. 144–147. [CrossRef] [PubMed]
Seletskiy, D. V. , Melgaard, S. D. , Bigotta, S. , Di Lieto, A. , Tonelli, M. , and Sheik-Bahae, M. , 2010, “ Laser Cooling of Solids to Cryogenic Temperatures,” Nat. Photonics, 4, p. 161–164.
Lu, L. , Han, X. , Li, J. , Hua, J. , and Ouyang, M. , 2013, “ A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles,” J. Power Sources, 226, p. 272. [CrossRef]
Chen, L. , Yang, M. , Xu, Y. , Zhang, Z. , Li, Z. , and Zhang, F. , 2016, “ Effects of Cooling on Bending Process of Heavy Rail Steel After Hot Rolling,” Metallogr. Microstruct. Anal., 5(3), pp. 196–206. [CrossRef]
Farshidianfar, M. H. , Khajepour, A. , and Gerlich, A. , 2016, “ Real-Time Control of Microstructure in Laser Additive Manufacturing,” Int. J. Adv. Manuf. Technol., 82(5), pp. 1173–1186. [CrossRef]
Won, Y. , Cho, J. , Agonafer, D. , Asheghi, M. , and Goodson, K. E. , 2015, “ Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics,” IEEE Trans. Compon., Packag., Manuf. Technol., 5(6), pp. 737–744.
Wu, Z. , and Sundén, B. , 2014, “ On Further Enhancement of Single-Phase and Flow Boiling Heat Transfer in Micro/Minichannels,” Renewable Sustainable Energy Rev., 40, pp. 11–27. [CrossRef]
Asadi, M. , Xie, G. , and Sunden, B. , 2014, “ A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels,” Int. J. Heat Mass Transfer, 79, pp. 34–53. [CrossRef]
Kositanont, C. , Putivisutisak, S. , Tagawa, T. , Yamada, H. , and Assabumrungrat, S. , 2014, “ Multiphase Parallel Flow Stabilization in Curved Microchannel,” Chem. Eng. J., 253, pp. 332–340. [CrossRef]
Khanikar, V. , Mudawar, I. , and Fisher, T. , 2009, “ Effects of Carbon Nanotube Coatings on Flow Boiling in a Micro-Channel,” Int. J. Heat Mass Transfer, 52, pp. 3805–3817. [CrossRef]
Mudawar, I. , Ujereh, S. , and Fisher, T. , 2007, “ Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling,” Int. J. Heat Mass Transfer, 50, pp. 4023–4038. [CrossRef]
Chu, K.-H. , Joung, Y. S. , Enright, R. , Buie, C. R. , and Wang, E. N. , 2013, “ Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement,” Appl. Phys. Lett., 102(15), p. 151602. [CrossRef]
Kim, J. H. , You, S. M. , and Choi, S. U. S. , 2004, “ Evaporative Spray Cooling of Plain and Microporous Coated Surfaces,” Int. J. Heat Mass Transfer, 47(14–16), pp. 3307–3315. [CrossRef]
Chen, R. H. , Chow, L. C. , and Navedo, J. E. , 2002, “ Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling,” Int. J. Heat Mass Transfer, 45(19), pp. 4033–4043. [CrossRef]
Putra, N. , Yanuar , and Iskandar, F. N. , 2011, “ Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment,” Exp. Therm. Fluid Sc., 35(7), pp. 1274–1281. [CrossRef]
Palko, J. W. , Zhang, C. , Wilbur, J. D. , Dusseault, T. J. , Asheghi, M. , Goodson, K. E. , and Santiago, J. G. , 2015, “ Approaching the Limits of Two-Phase Boiling Heat Transfer: High Heat Flux and Low Superheat,” Appl. Phys. Lett., 107(25), p. 253903. [CrossRef]
Sarafraz, M. M. , and Hormozi, F. , 2014, “ Experimental Study on the Thermal Performance and Efficiency of a Copper Made Thermosyphon Heat Pipe Charged With Alumina–Glycol Based Nanofluids,” Powder Technol., 266, pp. 378–387. [CrossRef]
Putnam, S. A. , Briones, A. M. , Byrd, L. W. , Ervin, J. S. , Hanchak, M. S. , White, A. , and Jones, J. G. , 2012, “ Microdroplet Evaporation on Superheated Surfaces,” Int. J. Heat Mass Transfer, 55, pp. 5793–5807. [CrossRef]
Lin, S. M. , Liu, H. F. , Wang, W. R. , Lee, S. Y. , Cheng, C. Y. , and Li, C. Y. , 2015, “ Optimum Design and Heat Transfer Correlation Equation of a Mini Radiator With Jet Impingement Cooling,” Appl. Therm. Eng., 89, pp. 727–737. [CrossRef]
Kim, C. B. , Leng, C. , Wang, X. D. , Wang, T. H. , and Yan, W. M. , 2015, “ Effects of Slot-Jet Length on the Cooling Performance of Hybrid Microchannel/ Slot-Jet Module,” Int. J. Heat Mass Transfer, 89, pp. 838–845. [CrossRef]
Zhao, Z. , Peles, Y. , and Jensen, M. K. , 2013, “ Water Jet Impingement Boiling From Structured-Porous Surfaces,” Int. J. Heat Mass Transfer, 63, pp. 445–453. [CrossRef]
Chen, Y.-J. , Li, Y.-Y. , and Liu, Z.-H. , 2015, “ Experimental Study on the Stagnation Line Heat Transfer Characteristics With High-Velocity Free Slot Jet Impingement Boiling,” Int. J. Heat Mass Transfer, 91, pp. 282–292. [CrossRef]
Karayiannis, T. G. , and Mahmoud, M. M. , 2017, “ Flow Boiling in Microchannels: Fundamentals and Applications,” Appl. Therm. Eng., 115, pp. 1372–1397. [CrossRef]
Colgan, E. G. , Furman, B. , Gaynes, M. , Graham, W. , LaBianca, N. , Magerlein, J. H. , Polastre, R. J. , Rothwell, M. B. , Bezama, R. J. , Choudhary, R. , Marston, K. , Toy, H. , Wakil, J. , Zitz, J. , and Schmidt, R. , 2005, “ Practical Implementation of Silicon Microchannel Coolers for High Power Chips,” 21st Annual IEEE Semiconductor Thermal Measurement Management Symposium, San Jose, CA, Mar. 15–17, pp. 1–7.
Pasupuleti, T. , and Kandlikar, S. G. , 2009, “ Cooling of Microelectronic Devices Packaged in a Single Chip Module Using Single Phase Refrigerant R-123,” ASME Paper No. ICNMM2009-82262.
Stienke, M. E. , and Kandlikar, S. G. , 2004, “ An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels,” ASME J. Heat Transfer, 126(4), pp. 518–526. [CrossRef]
Zhu, Y. , Antao, D. S. , Chu, K.-H. , Chen, S. , Hendricks, T. J. , Zhang, T. , and Wang, E. N. , 2016, “ Surface Structure Enhanced Microchannel Flow Boiling,” ASME J. Heat Transfer, 138(9), p. 091501. [CrossRef]
Kim, S.-M. , and Mudawar, I. , 2013, “ Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow,” Int. J. Heat Mass Transfer, 56, pp. 238–250. [CrossRef]
Browne, E. A. , Michna, G. J. , Jensen, M. K. , and Peles, Y. , 2010, “ Microjet Array Single-Phase and Flow Boiling Heat Transfer With R134a,” Int. J. Heat Mass Transfer, 53(23–24), pp. 5027–5034. [CrossRef]
Rylatt, D. , and O'Donovan, T. , 2012, “ Heat Transfer Enhancement to a Confined Impinging Synthetic Air Jet,” Appl. Therm. Eng., 51(1–2), pp. 468–475.
Joshi, S. N. , and Dede, E. M. , 2015, “ Effect of Sub-Cooling on Performance of a Multi-Jet Two Phase Cooler With Multi-Scale Porous Surfaces,” Int. J. Therm. Sci., 87, pp. 110–120.
Rau, M. J. , Dede, E. M. , and Garimella, S. V. , 2014, “ Local Single- and Two-Phase Heat Transfer From an Impinging Cross-Shaped Jet,” Int. J. Heat Mass Transfer, 79, p. 432. [CrossRef]
Qiu, L. , Dubey, S. , Choo, F. H. , and Duan, F. , 2015, “ Recent Developments of Jet Impingement Nucleate Boiling,” Int. J. Heat Mass Transfer, 89, pp. 42–58.
Valiorgue, P. , Persoons, T. , McGuinn, A. , and Murray, D. B. , 2009, “ Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing,” Exp. Therm. Fluid Sci., 33(4), pp. 597–603. [CrossRef]
Glynn, C. , O'Donovan, T. , and Murray, D. , 2005, “ Jet Impingement Cooling,” Ninth UK National Heat Transfer Conference, Manchester, UK, Sept. 5–6, Paper No. PS3-01.
Qiu, Y.-H. , and Liu, Z.-H. , 2005, “ Critical Heat Flux of Steady Boiling for Saturated Liquids Jet Impingement on the Stagnation Zone,” Int. J. Heat Mass Transfer, 48(21–22), pp. 4590–4597. [CrossRef]
Yarin, L. P. , Mosyak, A. , and Hetsroni, G. , 2009, Fluid Flow, Heat Transfer and Boiling in Micro-Channels (Heat and Mass Transfer), Springer-Verlag, Berlin. [CrossRef]
Kandlikar, S. G. , Colin, S. , Peles, Y. , Garimella, S. , Pease, R. F. , Brandner, J. J. , and Tuckerman, D. B. , 2013, “ Heat Transfer in Microchannels—2012 Status and Research Needs,” ASME J. Heat Transfer, 135(9), p. 091001. [CrossRef]
Schultz, M. , Yang, F. H. , Colgan, E. , Polastre, R. , Dang, B. , Tsang, C. , Gaynes, M. , Parida, P. , Knickerbocker, J. , and Chainer, T. , 2016, “ Embedded Two-Phase Cooling of Large Three-Dimensional Compatible Chips With Radial Channels,” ASME J. Electron. Packag., 138(2), p. 021005. [CrossRef]
Kandlikar, S. G. , 2014, “ Review and Projections of Integrated Cooling Systems for Three-Dimensional Integrated Circuits,” ASME J. Electron. Packag., 136(2), p. 024001. [CrossRef]
Van Carey, P. , 2007, Liquid-Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd ed., Taylor & Francis, New York.
Kim, S.-M. , and Mudawar, I. , 2012, “ Consolidated Method to Predicting Pressure Drop and Heat Transfer Coefficient for Both Subcooled and Saturated Flow Boiling in Micro-Channel Heat Sinks,” Int. J. Heat Mass Transfer, 55, p. 3720. [CrossRef]
Sung, M. K. , and Mudawar, I. , 2009, “ Single-Phase and Two-Phase Hybrid Cooling Schemes for High-Heat-Flux Thermal Management of Defense Electronics,” ASME J. Electron. Packag., 131(2), p. 021013. [CrossRef]
Lee, J. , and Mudawar, I. , 2005, “ Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications—Part II: Heat Transfer Characteristics,” Int. J. Heat Mass Transfer, 48(5), p. 941. [CrossRef]
Yang, J. , Pais, M. R. , and Chow, L. C. , 1993, “ High Heat Flux Spray Cooling,” Proc. SPIE, 1739.
Kim, J. , 2007, “ Spray Cooling Heat Transfer: The State of the Art,” Int. J. Heat Fluid Flow, 28(4), pp. 753–767. [CrossRef]
Liu, X. , Gabour, L. A. , and Leinhard, J. H. , 1993, “ Stagnation-Point Heat Transfer During Impingement of Laminar Liquid Jets: Analysis Including Surface Tension,” ASME J. Heat Transfer, 115(1), pp. 99–105. [CrossRef]
Mitsutake, Y. , and Monde, M. , 2003, “ Ultra High Critical Heat Flux During Forced Flow Boiling Heat Transfer With an Impinging Jet,” ASME J. Heat Transfer, 125(6), p. 1038. [CrossRef]
Kuo, C. J. , and Peles, Y. , 2009, “ Flow Boiling of Coolant (HFE-7000) Inside Structured and Plain Wall Microchannels,” ASME J. Heat Transfer, 131(12), p. 121011. [CrossRef]
Horacek, B. , Kiger, K. T. , and Kim, J. , 2005, “ Single Nozzle Spray Cooling Heat Transfer Mechanisms,” Int. J. Heat Mass Transfer, 48(8), p. 1425. [CrossRef]
Rainey, K. N. , You, S. M. , and Lee, S. , 2003, “ Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72,” ASME J. Heat Transfer, 125(1), p. 75. [CrossRef]
Steinke, M. E. , and Kandlikar, S. G. , 2004, “ Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels,” Int. J. Heat Mass Transfer, 47(8), pp. 1925–1935. [CrossRef]
Horacek, B. , Kim, J. , and Kiger, K. T. , 2004, “ Spray Cooling Using Multiple Nozzles: Visualization and Wall Heat Transfer Measurements,” IEEE Trans. Device Mater. Reliab., 4(4), p. 614. [CrossRef]
Jaikumar, A. , and Kandlikar, S. G. , 2016, “ Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels,” App. Phys. Lett., 108(4), p. 041604. [CrossRef]
Jaikumar, A. , and Kandlikar, S. G. , 2016, “ Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels,” Int. J. Heat Mass Transfer, 95, pp. 795–805. [CrossRef]
Putnam, S. A. , Briones, A. M. , Ervin, J. S. , Hanchak, M. S. , Byrd, L. W. , and Jones, J. G. , 2012, “ Interfacial Heat Transfer During Microdroplet Evaporation on a Laser Heated Surface,” Int. J. Heat Mass Transfer, 55(23–24), pp. 6307–6320. [CrossRef]
Bigham, S. , and Moghaddam, S. , 2015, “ Microscale Study of Mechanisms of Heat Transfer During Flow Boiling in a Microchannel,” Int. J. Heat Mass Transfer, 88, pp. 111–121. [CrossRef]
Buongiorno, J. , Cahill, D. G. , Hidrovo, C. H. , Moghaddam, S. , Schmidt, A. J. , and Shi, L. , 2014, “ Micro- and Nanoscale Measurement Methods for Phase Change Heat Transfer on Planar and Structured Surfaces,” Nanoscale Microscale Thermophys. Eng., 18(3), pp. 270–287. [CrossRef]
Plawsky, J. L. , Fedorov, A. G. , Garimella, S. V. , Ma, H. B. , Maroo, S. C. , Chen, L. , and Nam, Y. , 2014, “ Nano- and Micro-Structures for Thin Film Evaporation: A Review,” Nanoscale Microscale Thermophys. Eng., 18(3), pp. 251–269. [CrossRef]
Cahill, D. G. , 2004, “ Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance,” Rev. Sci. Instrum., 75(12), p. 5119. [CrossRef]
Kang, K. , Koh, Y. K. , Chiritescu, C. , Zheng, X. , and Cahill, D. G. , 2008, “ Two-Tint Pump-Probe Measurements Using a Femtosecond Laser Oscillator and Sharp-Edged Optical Filters,” Rev. Sci. Instrum., 79(11), p. 114901. [CrossRef] [PubMed]
Schmidt, A. J. , Chiesa, M. , Chen, X. , and Chen, G. , 2008, “ An Optical Pump-Probe Technique for Measuring the Thermal Conductivity of Liquids,” Rev. Sci. Instrum., 79(6), p. 064902. [CrossRef] [PubMed]
Feser, J. P. , and Cahill, D. G. , 2012, “ Probing Anisotropic Heat Transport Using Time-Domain Thermoreflectance With Offset Laser Spots,” Rev. Sci. Instrum., 83(10), p. 104901. [CrossRef] [PubMed]
Feser, J. P. , Liu, J. , and Cahill, D. G. , 2014, “ Pump-Probe Measurements of the Thermal Conductivity Tensor for Materials Lacking In-Plane Symmetry,” Rev. Sci. Instrum., 85(10), p. 104903. [CrossRef] [PubMed]
Mehrvand, M. , and Putnam, S. A. , 2016, “ Heat Transfer Coefficient Measurements in the Thermal Boundary Layer of Microchannel Heat Sinks,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, May 31–June 3, pp. 487–494.
Park, J.-Y. , Min, C.-K. , Granick, S. , and Cahill, D. G. , 2012, “ Heat Transfer and Residence Time When Water Droplets Hit a Scalding Surface,” ASME J. Heat Transfer, 134(10), p. 101503. [CrossRef]
Park, J. Y. , Gardner, A. , Ramesh, A. , King, W. P. , Granick, S. , and Cahill, D. G. , 2014, “ Droplet Impingement and Vapor Layer Formation on Hot Hydrophobic Surfaces,” ASME J. Heat Transfer, 136(9), p. 092902. [CrossRef]
Incropera, F. P. , DeWitt, D. P. , Bergman, T. L. , and Lavine, A. S. , 2007, Fundamentals of Heat and Mass Transfer, Vol. 6, Wiley, Hoboken, NJ.
Shabany, Y. , 2009, Heat Transfer: Thermal Management of Electronics, CRC Press, Boca Raton, FL.
Carslaw, H. S. , and Jaeger, J. C. , 1959, Conduction of Heat in Solids, Oxford University Press, Oxford, UK, p. 76.
Koh, Y. K. , and Cahill, D. G. , 2007, “ Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys,” Phys. Rev. B, 76(7), p. 075207. [CrossRef]
Schmidt, A. J. , Cheaito, R. , and Chiesa, M. , 2010, “ Characterization of Thin Metal Films Via Frequency-Domain Thermoreflectance,” J. Appl. Phys., 107(2), p. 24908. [CrossRef]
Johnson, J. A. , Maznev, A. A. , Cuffe, J. , Eliason, J. K. , Minnich, A. J. , Kehoe, T. , Sotomayor Torres, C. M. , Chen, G. , and Nelson, K. A. , 2013, “ Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane,” Phys. Rev. Lett., 110(2), p. 025901. [CrossRef] [PubMed]
Marin, E. , Vaca-Oyola, L. S. , and Delgado-Vasallo, O. , 2016, “ On Thermal Waves' Velocity: Some Open Questions in Thermal Waves' Physics,” Rev. Mex. Fis. E, 62, pp. 1–4. http://rmf.smf.mx/pdf/rmf-e/62/1/62_1_1.pdf
Kandlikar, S. G. , 2001, “ Critical Heat Flux in Subcooled Flow Boiling—An Assessment of Current Understanding and Future Directions for Research,” Multiphase Sci. Technol., 13(3), pp. 207–232. https://digitalarchive.rit.edu/xmlui/handle/1850/7372
Maddox, D. E. , and Mudawar, I. , 1989, “ Single- and Two-Phase Convective Heat Transfer From Smooth and Enhanced Microelectronic Heat Sources in a Rectangular Channel,” ASME J. Heat Transfer, 111(4), p. 1045. [CrossRef]
Incropera, F. P. , Kerby, J. S. , Moffatt, D. F. , and Ramadhyani, S. , 1986, “ Convection Heat Transfer From Discrete Heat Sources in a Rectangular Channel,” Int. J. Heat Mass Transfer, 29(7), pp. 1051–1058. [CrossRef]
Bergman, T. L. , Lavine, A. S. , Incropera, F. P. , and DeWitt, D. P. , 2011, Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, Hoboken, NJ.

Figures

Grahic Jump Location
Fig. 1

Yearly trends in microelectronics (Reproduced with permission from Waldrop [3]. Copyright 2016 by Nature Publishing Group). (a) Number of transistors per chip, viz., Moore's law (black line). (b) Microprocessor clock speeds, where the plateau region signifies the “speed limit” implemented in 2004. (c) Hot-spot heat fluxes calculated via the transistor and clock-speed trends (i.e., a and b), a processor die area of 500 mm2, DARPA's goal of 20 pJ per (fl)op, and the indicated (fl)op efficiencies (90%, 98%, respectively).

Grahic Jump Location
Fig. 2

Overview of the microchannel flow-loop apparatus and TDTR measurement methodology: (a) syringe pump-based microchannel flow loop, (b) optical bench schematic of our two-tint TDTR measurement setup, (c) expanded, construction view of the microchannel sample stage (also depicted in (a) and (b)), and (d) schematic illustrations of both hydrodynamic BL growth (δh(x)) in a microchannel of height (H≈ 400 μm) and thermal BL growth (δth(x)) from a hot-spot in the metal-coated glass wall by the TDTR pump-probe lasers

Grahic Jump Location
Fig. 3

TDTR ratio data (symbols) and model predictions (lines) as a function of pump-probe delay-time for a Ti-coated FS glass window in thermal contact with nonflowing (stagnant) water or air in the microchannel (fmod  = 962 kHz)

Grahic Jump Location
Fig. 4

Predicted dependence of the TDTR ratio on (a) the thermal effusivity and (b) thermal diffusivity of the sample/fluid in thermal contact with a Ti-coated FS substrate (see Fig. 3). Predictions are provided for different materials (symbols) at two different pump-probe delay times, τd=100 ps and τd=3 ns (fmod = 962 kHz). The magnitude of the difference between the open (100 ps) and closed (3 ns) symbol data is indicative of the cooling rate of the Ti metal thin film.

Grahic Jump Location
Fig. 5

(a) Schematic illustration of the anisotropic TDTR method with a flowing fluid (not-to-scale), where Δx is the pump-probe offset, w is the pump beam waist, vavg is the average flow field velocity, and ℓth is the thermal penetration depth. (b) Probing upstream the pump-induced thermal BL. (c) Probing downstream (or within) the pump-induced thermal BL.

Grahic Jump Location
Fig. 6

Anisotropic TDTR measurements corresponding with heat conduction and natural convection of water and air in the microchannel (τd= 100 ps, fmod  = 962 kHz)

Grahic Jump Location
Fig. 7

(a) Schematic depiction of probing upstream (Δx/w<0) or downstream (Δx/w>0) the pump induced hot-spot in the microchannel. (b) Anisotropic TDTR measurements for Ti-coated glass with flowing or stagnant water in the microchannel. (c) Corresponding thermal effusivity of water (left axis) and HTC (right axis) based on our differential TDTR analysis scheme (τd= 100 ps, fmod= 962 kHz, w= 9.5 μm).

Grahic Jump Location
Fig. 8

(a) TDTR ratio data and (b) corresponding HTC data atzero pump-probe offset (Δx/w≅ 0) as a function of the waterflow rate in the microchannel (Ti heater/thermometer, fmod= 962 kHz, w=9.5 μm)

Grahic Jump Location
Fig. 9

(a) Anisotropic TDTR measurements for Hf80-coated glass with flowing or stagnant water in the microchannel and (b) corresponding thermal effusivity of water (left axis) and HTC (right axis) based on our differential TDTR analysis scheme (τd= 100 ps, fmod= 976 kHz, w= 8.7 μm)

Grahic Jump Location
Fig. 10

(a) Schematic of probing upstream (Δx/w<0) or downstream (Δx/w>0) the pump induced hot-spot in the microchannel, where the dotted lines represent the flow-induced anisotropic metal wall temperature. (b) Comparison between the measured (symbols) and predicted (lines) enhancement in the local HTC due to forced convection over the hot-spot in the microchannel. The filled circles are for Ti/FS, whereas the open circles are for Hf80/FS (see Figs. 7 and 9, respectively).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In