Film condensation plays a critical role in a wide variety of engineering applications, ranging from process heat exchangers and fuel cells, to power generation, heating, ventilation and air-conditioning (HVAC), and refrigeration. Filmwise condensation is prone to condensate buildup that leads to increasing thermal resistance without appropriate drainage. In order to obtain enhanced heat transfer, surfaces that are equally effective at condensation and drainage need to be designed. Most of the surfaces designed for filmwise condensation rely on gravity to draw the condensate from the surface onto drainage channels or ridges; however, this mechanism is nonexistent in horizontal condensation surface or in reduced-gravity. Gregorig [1] noted that when an appropriately contoured surface is chosen, surface tension could be utilized to draw the condensate into drainage channels, wherein gravity is used for drainage. Zener and Lavi [2] presented a number of surface designs along with optimization methods for improving the design of *vertical* condensing surfaces. They introduced a simple drainage network for a contoured surface that consisted of a system of ridges (drainage wall) and valleys (condensing surface) with valley width four times the ridge width, and the network relied on surface tension to drain the condensing surfaces. Webb [3] extended the optimization analysis of Zener and Lavi [2] to include a broader range of condensing convex surfaces. Three parameters, convex surface length, convex surface radius of curvature at the crest, and angle at the end of the convex surface, were optimized to yield a maximum condensation coefficient based on the projected area of the fluted surface. Shigeki et al. [4] studied the effect of surface tension on the motion of condensate during laminar condensation inside a small trough. They revealed that the suction of liquid flowing into the trough reduced the liquid film thickness and enhanced the local condensation heat transfer. They reported that the heat transfer coefficient decreased with increasing trough width and was at least 3–4 times the Nusselt's prediction. However, the experiment and modeling were performed on a vertical open channel; therefore, the drainage in the depth of the fins was still gravity-controlled. Webb et al. [5] developed a theoretical model to predict the condensation coefficient on horizontal integral-fin tubes designed for surface-tension drainage from the fins. The model showed that a fraction of the tube surface allows bridging of the condensate, and this bridging occurs on the lower side of the tube, whereas surface tension was the dominant drainage force on the integral-fin tubes. However, they reported that the condensation rate on the condensate-bridged zone was negligible. Kedzierski and Webb [6] designed a family of high-performance fin profiles for surface-tension-drained condensation. The trade-offs between condensate retention and number of fins per meter (fpm) had to be considered to estimate the fin thickness, as larger fpm would result in increased heat transfer but would also retain the condensate on the interfin spaces. They suggested that the fin height and fin thickness should be designed based on two parameters: (1) bond number of unity and (2) the product of heat transfer coefficient and the fin arc length, to ensure an efficient surface tension drainage.