An Experimental Study of Mist Film Cooling with Fan-Shaped Holes on an Extended Flat Plate - Part 1: Heat Transfer

[+] Author and Article Information
Reda Ragab

Energy Conversion and Conservation Center, University of New Orleans, New Orleans, Louisiana, USA

Ting Wang

Energy Conversion and Conservation Center, University of New Orleans, New Orleans, Louisiana, USA

1Corresponding author.

ASME doi:10.1115/1.4037641 History: Received May 19, 2016; Revised June 21, 2017


Motivated by the need to further improve film cooling in terms of both cooling effectiveness and coolant coverage area, the mist/air film cooling scheme is investigated through experiments using fan-shaped holes over an extended downstream length in this study. Both an existing wind tunnel and test facility, used in previous work, have been retrofitted. The first modification was extending the length of the flat plate test section to cover longer distances downstream of the injection holes, up to X/D=100, in order to investigate whether mist cooling can be harnessed farther downstream where single-phase film cooling is not effective. The second modification was to incorporate a fan-shaped diffusion hole geometry in order to investigate whether mist can further enhance the film cooling performance of the already highly effective fan-shaped holes. A Phase Doppler Particle Analyzer (PDPA) system is employed to measure droplet size, velocity, and turbulence information. An infrared camera and thermocouples are both used for temperature measurements. Part 1 is focused on the heat transfer result on the wall, and Part 2 is focused on the two-phase droplet multiphase flow behavior. Three blowing ratios are investigated. The results show that, at low blowing ratios when the film is attached to the surface, the enhancement of the mist film cooling effectiveness, compared to the air-only case, on the centerline of the hole ranges from 40% in the near hole region to over 170% at X/D = 100.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In