Maxwell,
J. C.
, 1873, A Treatise on Electricity and Magnetism,
Dover Publications,
Mineola, NY.

Ölçer,
N. Y.
, 1964, “
On the Theory of Conductive Heat Transfer in Finite Regions,” Int. J. Heat Mass Transfer,
7(3), pp. 307–314.

[CrossRef]
Özışık,
M.
, 1989, Boundary Value Problems of Heat Conduction,
Courier Corporation, North Chelmsford, MA.

Vernotte,
P.
, 1958, “
Les Paradoxes de la Théorie Continue de Léquation de la Chaleur,” C. R. Hebd. Seances Acad. Sci.,
246(22), pp. 3154–3155.

Cattaneo,
C.
, 1958, “
Sur une Forme de Lequation de la Chaleur Eliminant le Paradoxe Dune Propagation Instantanee,” C. R. Hebd. Seances Acad. Sci.,
247(4), pp. 431–433.

Chester,
M.
, 1963, “
Second Sound in Solids,” Phys. Rev.,
131(5), pp. 2013–2015.

[CrossRef]
Morse,
P. M.
, and
Feshbach,
H.
, 1953, Methods of Theoretical Physics, McGraw-Hill, New York.

Ordonez-Miranda,
J.
, and
Alvarado-Gil,
J.
, 2009, “
Thermal Wave Oscillations and Thermal Relaxation Time Determination in a Hyperbolic Heat Transport Model,” Int. J. Therm. Sci.,
48(11), pp. 2053–2062.

[CrossRef]
Peshkov,
V.
, 1946, “
Determination of the Velocity of Propagation of the Second Sound in Helium II,” J. Phys. USSR,
10, pp. 389–398.

Peshkov,
V.
, 2013, “
The Second Sound in Helium II,” *Helium 4: The Commonwealth and International Library: Selected Readings in Physics*, Elsevier, Amsterdam, The Netherlands, p. 166.

Pellam,
J. R.
, 1949, “
Investigations of Pulsed Second Sound in Liquid Helium II,” Phys. Rev.,
75(8), pp. 1183–1194.

[CrossRef]
Wang,
M.
,
Yang,
N.
, and
Guo,
Z.-Y.
, 2011, “
Non-Fourier Heat Conductions in Nanomaterials,” J. Appl. Phys.,
110(6), p. 064310.

[CrossRef]
Wang,
H.-D.
, 2014, Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory,
Springer Science and Business Media, Berlin.

[CrossRef]
Tang,
D.
, and
Araki,
N.
, 1999, “
Wavy, Wavelike, Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses,” Int. J. Heat Mass Transfer,
42(5), pp. 855–860.

[CrossRef]
Eckert,
E. R. G.
, and
Drake,
R. M.
, 1972, Analysis of Heat Transfer and Mass Transfer,
McGraw-Hill, New York.

Chester,
M.
, 1966, “
High-Frequency Thermometry,” Phys. Rev.,
145(1), pp. 76–80.

[CrossRef]
Nettleton,
R.
, 1960, “
Relaxation Theory of Thermal Conduction in Liquids,” Phys. Fluids,
3(2), pp. 216–225.

[CrossRef]
Maurer,
M. J.
, 1969, “
Relaxation Model for Heat Conduction in Metals,” J. Appl. Phys.,
40(13), pp. 5123–5130.

[CrossRef]
Francis,
P.
, 1972, “
Thermo-Mechanical Effects in Elastic Wave Propagation: A Survey,” J. Sound Vib.,
21(2), pp. 181–192.

[CrossRef]
Luikov,
A.
, 1965, “
Application of the Methods of Thermodynamics of Irreversible Processes to the Investigation of Heat and Mass Transfer,” J. Eng. Phys.,
9(3), pp. 189–202.

[CrossRef]
Mitra,
K.
,
Kumar,
S.
,
Vedevarz,
A.
, and
Moallemi,
M. K.
, 1995, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat,” ASME J. Heat Transfer,
117(3), pp. 568–573.

[CrossRef]
Kaminski,
W.
, 1990, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure,” ASME J. Heat Transfer,
112(3), pp. 555–560.

[CrossRef]
Wang,
L.
, 2000, “
Solution Structure of Hyperbolic Heat-Conduction Equation,” Int. J. Heat Mass Transfer,
43(3), pp. 365–373.

[CrossRef]
Wang,
L.
,
Zhou,
X.
, and
Wei,
X.
, 2007, Heat Conduction: Mathematical Models and Analytical Solutions,
Springer Science and Business Media, Berlin.

Kronberg,
A.
,
Benneker,
A.
, and
Westerterp,
K.
, 1998, “
Notes on Wave Theory in Heat Conduction: A New Boundary Condition,” Int. J. Heat Mass Transfer,
41(1), pp. 127–137.

[CrossRef]
Ali,
Y.
, and
Zhang,
L.
, 2005, “
Relativistic Heat Conduction,” Int. J. Heat Mass Transfer,
48(12), pp. 2397–2406.

[CrossRef]
Bai,
C.
, and
Lavine,
A.
, 1995, “
On Hyperbolic Heat Conduction and the Second Law of Thermodynamics,” ASME J. Heat Transfer,
117(2), pp. 256–263.

[CrossRef]
Barletta,
A.
, and
Zanchini,
E.
, 1997, “
Hyperbolic Heat Conduction and Local Equilibrium: A Second Law Analysis,” Int. J. Heat Mass Transfer,
40(5), pp. 1007–1016.

[CrossRef]
Glass,
D.
,
Özişik,
M.
, and
Vick,
B.
, 1987, “
Non-Fourier Effects on Transient Temperature Resulting From Periodic On-Off Heat Flux,” Int. J. Heat Mass Transfer,
30(8), pp. 1623–1631.

[CrossRef]
Al-Khairy,
R. T.
, and
Al-Ofey,
Z. M.
, 2009, “
Analytical Solution of the Hyperbolic Heat Conduction Equation for Moving Semi-Infinite Medium Under the Effect of Time-Dependent Laser Heat Source,” J. Appl. Math.,
2009, p. 604695.

[CrossRef]
Lewandowska,
M.
, and
Malinowski,
L.
, 2006, “
An Analytical Solution of the Hyperbolic Heat Conduction Equation for the Case of a Finite Medium Symmetrically Heated on Both Sides,” Int. Commun. Heat Mass Transfer,
33(1), pp. 61–69.

[CrossRef]
Taitel,
Y.
, 1972, “
On the Parabolic, Hyperbolic and Discrete Formulation of the Heat Conduction Equation,” Int. J. Heat Mass Transfer,
15(2), pp. 369–371.

[CrossRef]
Özişik,
M.
, and
Vick,
B.
, 1984, “
Propagation and Reflection of Thermal Waves in a Finite Medium,” Int. J. Heat Mass Transfer,
27(10), pp. 1845–1854.

[CrossRef]
Gembarovič,
J.
, and
Majernik,
V.
, 1988, “
Non-Fourier Propagation of Heat Pulses in Finite Medium,” Int. J. Heat Mass Transfer,
31(5), pp. 1073–1080.

[CrossRef]
Kar,
A.
,
Chan,
C.
, and
Mazumder,
J.
, 1992, “
Comparative Studies on Nonlinear Hyperbolic and Parabolic Heat Conduction for Various Boundary Conditions: Analytic and Numerical Solutions,” ASME J. Heat Transfer,
114(1), pp. 14–20.

[CrossRef]
Tang,
D.
, and
Araki,
N.
, 1996, “
Analytical Solution of Non-Fourier Temperature Response in a Finite Medium Under Laser-Pulse Heating,” Heat Mass Transfer,
31(5), pp. 359–363.

[CrossRef]
Yuen,
W.
, and
Lee,
S.
, 1989, “
Non-Fourier Heat Conduction in a Semi-Infinite Solid Subjected to Oscillatory Surface Thermal Disturbances,” ASME J. Heat Transfer,
111(1), pp. 178–181.

[CrossRef]
Barletta,
A.
, and
Zanchini,
E.
, 1996, “
Hyperbolic Heat Conduction and Thermal Resonances in a Cylindrical Solid Carrying a Steady-Periodic Electric Field,” Int. J. Heat Mass Transfer,
39(6), pp. 1307–1315.

[CrossRef]
Barletta,
A.
, 1996, “
Hyperbolic Propagation of an Axisymmetric Thermal Signal in an Infinite Solid Medium,” Int. J. Heat Mass Transfer,
39(15), pp. 3261–3271.

[CrossRef]
Hector,
L. G.
,
Woo-Seung,
K.
, and
Özisik,
M. N.
, 1992, “
Propagation and Reflection of Thermal Waves in a Finite Medium Due to Axisymmetric Surface Sources,” Int. J. Heat Mass Transfer,
35(4), pp. 897–912.

[CrossRef]
Chan,
S.
,
Low,
M.
, and
Mueller,
W.
, 1971, “
Hyperbolic Heat Conduction in Catalytic Supported Crystallites,” AIChE J.,
17(6), pp. 1499–1501.

[CrossRef]
Jiang,
F.
, 2006, “
Solution and Analysis of Hyperbolic Heat Propagation in Hollow Spherical Objects,” Heat Mass Transfer,
42(12), pp. 1083–1091.

[CrossRef]
Zaіtsev,
V.
, and
Polyanin,
A.
, 1995, Handbook of Linear Partial Differential Equations,
Nauka,
Fizmatlit, Moscow.

Han-Taw,
C.
, and
Jae-Yuh,
L.
, 1994, “
Analysis of Two-Dimensional Hyperbolic Heat Conduction Problems,” Int. J. Heat Mass Transfer,
37(1), pp. 153–164.

[CrossRef]
Wiggert,
D.
, 1977, “
Analysis of Early-Time Transient Heat Conduction by Method of Characteristics,” ASME J. Heat Transfer,
99(1), pp. 35–40.

[CrossRef]
Glass,
D. E.
,
Özişik,
M. N.
,
McRae,
D. S.
, and
Vick,
B.
, 1985, “
On the Numerical Solution of Hyperbolic Heat Conduction,” Numer. Heat Transfer,
8(4), pp. 497–504.

[CrossRef]
Han-Taw,
C.
, and
Jae-Yuh,
L.
, 1993, “
Numerical Analysis for Hyperbolic Heat Conduction,” Int. J. Heat Mass Transfer,
36(11), pp. 2891–2898.

[CrossRef]
Torii,
S.
, and
Yang,
W.-J.
, 2005, “
Heat Transfer Mechanisms in Thin Film With Laser Heat Source,” Int. J. Heat Mass Transfer,
48(3), pp. 537–544.

[CrossRef]
Blackwell,
B.
, 1990, “
Temperature Profile in Semi-Infinite Body With Exponential Source and Convective Boundary Condition,” ASME J. Heat Transfer,
112(3), pp. 567–571.

[CrossRef]
Zubair,
S.
, and
Chaudhry,
M. A.
, 1996, “
Heat Conduction in a Semi-Infinite Solid Due to Time-Dependent Laser Source,” Int. J. Heat Mass Transfer,
39(14), pp. 3067–3074.

[CrossRef]
Anderson,
D. A.
,
Tannehill,
J. C.
, and
Pletcher,
R. H.
, 1984, Computational Fluid Mechanics and Heat Transfer, Hemisphere,
New York, p. 166.

Lewandowska,
M.
, 2001, “
Hyperbolic Heat Conduction in the Semi-Infinite Body With a Time-Dependent Laser Heat Source,” Heat and Mass Transfer,
37(4–5), pp. 333–342.

[CrossRef]
Yang,
H.
, 1992, “
Solution of Two-Dimensional Hyperbolic Heat Conduction by High-Resolution Numerical Methods,” Numer. Heat Transfer,
21(3), pp. 333–349.

[CrossRef]
Yen,
C.-C.
, and
Wu,
C.-Y.
, 2003, “
Modelling Hyperbolic Heat Conduction in a Finite Medium With Periodic Thermal Disturbance and Surface Radiation,” Appl. Math. Modell.,
27(5), pp. 397–408.

[CrossRef]
Tang,
D.
, and
Araki,
N.
, 1996, “
The Wave Characteristics of Thermal Conduction in Metallic Films Irradiated by Ultra-Short Laser Pulses,” J. Phys. D: Appl. Phys.,
29(10), pp. 2527–2533.

[CrossRef]
Chih-Yang,
W.
, 1989, “
Hyperbolic Heat Conduction With Surface Radiation and Reflection,” Int. J. Heat Mass Transfer,
32(8), pp. 1585–1587.

[CrossRef]
Herwig,
H.
, and
Beckert,
K.
, 2000, “
Fourier Versus Non-Fourier Heat Conduction in Materials With a Nonhomogeneous Inner Structure,” ASME J. Heat Transfer,
122(2), pp. 363–364.

[CrossRef]
Guyer,
R. A.
, and
Krumhansl,
J.
, 1996, “
Solution of the Linearized Phonon Boltzmann Equation,” Phys. Rev.,
148(2), pp. 766–778.

[CrossRef]
Tzou,
D.
, 1995, “
A Unified Field Approach for Heat Conduction From Macro-to Micro-Scales,” ASME J. Heat Transfer,
117(1), pp. 8–16.

[CrossRef]
Wang,
L.
,
Xu,
M.
, and
Zhou,
X.
, 2001, “
Well-Posedness and Solution Structure of Dual-Phase-Lagging Heat Conduction,” Int. J. Heat Mass Transfer,
44(9), pp. 1659–1669.

[CrossRef]
Al-Nimr,
M.
,
Naji,
M.
, and
Abdallah,
R.
, 2004, “
Thermal Behavior of a Multi-Layered Thin Slab Carrying Periodic Signals Under the Effect of the Dual-Phase-Lag Heat Conduction Model,” Int. J. Thermophys.,
25(3), pp. 949–966.

[CrossRef]
Xu,
M.
, and
Wang,
L.
, 2002, “
Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction,” Int. J. Heat Mass Transfer,
45(5), pp. 1055–1061.

[CrossRef]
Xu,
M.
, and
Wang,
L.
, 2005, “
Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation,” Int. J. Heat Mass Transfer,
48(25), pp. 5616–5624.

[CrossRef]
Quintanilla,
R.
, 2008, “
A Well-Posed Problem for the Dual-Phase-Lag Heat Conduction,” J. Therm. Stresses,
31(3), pp. 260–269.

[CrossRef]
Ordonez-Miranda,
J.
, and
Alvarado-Gil,
J. J.
, 2011, “
On the Stability of the Exact Solutions of the Dual-Phase Lagging Model of Heat Conduction,” Nanoscale Res. Lett.,
6(1), pp. 1–6.

[CrossRef]
Lam,
T. T.
, 2014, “
A Generalized Heat Conduction Solution for Ultrafast Laser Heating in Metallic Films,” Int. J. Heat Mass Transfer,
73, pp. 330–339.

[CrossRef]
Fabrizio,
M.
, and
Lazzari,
B.
, 2014, “
Stability and Second Law of Thermodynamics in Dual-Phase-Lag Heat Conduction,” Int. J. Heat Mass Transfer,
74, pp. 484–489.

[CrossRef]
Körner,
C.
, and
Bergmann,
H.
, 1998, “
The Physical Defects of the Hyperbolic Heat Conduction Equation,” Appl. Phys. A,
67(4), pp. 397–401.

[CrossRef]
Shen,
B.
, and
Zhang,
P.
, 2008, “
Notable Physical Anomalies Manifested in Non-Fourier Heat Conduction Under the Dual-Phase-Lag Model,” Int. J. Heat Mass Transfer,
51(7–8), pp. 1713–1727.

[CrossRef]
Antaki,
P. J.
, 2005, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat,” ASME J. Heat Transfer,
127(2), pp. 189–193.

[CrossRef]
Tzou,
D.
, and
Chiu,
K.
, 2001, “
Temperature-Dependent Thermal Lagging in Ultrafast Laser Heating,” Int. J. Heat Mass Transfer,
44(9), pp. 1725–1734.

[CrossRef]
Liu,
K.-C.
, 2005, “
Analysis of Dual-Phase-Lag Thermal Behaviour in Layered Films With Temperature-Dependent Interface Thermal Resistance,” J. Phys. D: Appl. Phys.,
38(19), pp. 3722–3732.

[CrossRef]
Shiomi,
J.
, and
Maruyama,
S.
, 2006, “
Non-Fourier Heat Conduction in a Single-Walled Carbon Nanotube: Classical Molecular Dynamics Simulations,” Phys. Rev. B,
73(20), p. 205420.

[CrossRef]
Tzou,
D. Y.
, 1995, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating,” Int. J. Heat Mass Transfer,
38(17), pp. 3231–3240.

[CrossRef]
Kulish,
V. V.
, and
Novozhilov,
V. B.
, 2004, “
An Integral Equation for the Dual-Lag Model of Heat Transfer,” ASME J. Heat Transfer,
126(5), pp. 805–808.

[CrossRef]
Smith,
A. N.
,
Hostetler,
J. L.
, and
Norris,
P. M.
, 1999, “
Nonequilibrium Heating in Metal Films: An Analytical and Numerical Analysis,” Numer. Heat Transfer, Part A,
35(8), pp. 859–873.

[CrossRef]
Chen,
J.
,
Beraun,
J.
, and
Tzou,
D.
, 2000, “
A Dual-Phase-Lag Diffusion Model for Predicting Thin Film Growth,” Semicond. Sci. Technol.,
15(3), pp. 235–241.

[CrossRef]
Al-Nimr,
M.
,
Naji,
M.
, and
Arbaci,
V.
, 2000, “
Nonequilibrium Entropy Production Under the Effect of the Dual-Phase-Lag Heat Conduction Model,” ASME J. Heat Transfer,
122(2), pp. 217–223.

[CrossRef]
Lin,
C.-K.
,
Hwang,
C.-C.
, and
Chuag,
Y.-P.
, 1997, “
The Unsteady Solutions of a Unified Heat Conduction Equation,” Int. J. Heat Mass Transfer,
40(7), pp. 1716–1719.

[CrossRef]
Lee,
Y.-M.
,
Lin,
P.-C.
, and
Tsai,
T.-W.
, 2009, “
Green's Function Solution of Dual-Phase-Lag Model,” ASME Paper No. MNHMT2009-18425.

Alkhairy,
R.
, 2012, “
Green's Function Solution for the Dual-Phase-Lag Heat Equation,” Appl. Math.,
3(10), pp. 1170–1178.

[CrossRef]
Chen,
J.
,
Beraun,
J.
, and
Tzou,
D.
, 1999, “
A Dual-Phase-Lag Diffusion Model for Interfacial Layer Growth in Metal Matrix Composites,” J. Mater. Sci.,
34(24), pp. 6183–6187.

[CrossRef]
Dai,
W.
, and
Nassar,
R.
, 1999, “
A Finite Difference Scheme for Solving the Heat Transport Equation at the Microscale,” Numer. Methods Partial Differ. Equations,
15(6), pp. 697–708.

[CrossRef]
Dai,
W.
,
Shen,
L.
,
Nassar,
R.
, and
Zhu,
T.
, 2004, “
A Stable and Convergent Three-Level Finite Difference Scheme for Solving a Dual-Phase-Lagging Heat Transport Equation in Spherical Coordinates,” Int. J. Heat Mass Transfer,
47(8), pp. 1817–1825.

[CrossRef]
Dai,
W.
, and
Nassar,
R.
, 2001, “
A Finite Difference Scheme for Solving a Three-Dimensional Heat Transport Equation in a Thin Film With Microscale Thickness,” Int. J. Numer. Methods Eng.,
50(7), pp. 1665–1680.

[CrossRef]
Zhang,
J.
, and
Zhao,
J. J.
, 2001, “
High Accuracy Stable Numerical Solution of 1D Microscale Heat Transport Equation,” Commun. Numer. Methods Eng.,
17(11), pp. 821–832.

[CrossRef]
Kunadian,
I.
,
McDonough,
J.
, and
Kumar,
R. R.
, 2005, “
An Efficient Numerical Procedure for Solving Microscale Heat Transport Equation During Femtosecond Laser Heating of Nanoscale Metal Films,” ASME Paper No. IPACK2005-73376.

Prakash,
G. S.
,
Reddy,
S. S.
,
Das,
S. K.
,
Sundararajan,
T.
, and
Seetharamu,
K. N.
, 2000, “
Numerical Modelling of Microscale Effects in Conduction for Different Thermal Boundary Conditions,” Numer. Heat Transfer, Part A,
38(5), pp. 513–532.

[CrossRef]
Ho,
J.-R.
,
Kuo,
C.-P.
, and
Jiaung,
W.-S.
, 2003, “
Study of Heat Transfer in Multilayered Structure Within the Framework of Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method,” Int. J. Heat Mass Transfer,
46(1), pp. 55–69.

[CrossRef]
Liu,
K.-C.
, and
Cheng,
P.-J.
, 2006, “
Numerical Analysis for Dual-Phase-Lag Heat Conduction in Layered Films,” Numer. Heat Transfer, Part A,
49(6), pp. 589–606.

[CrossRef]
Chou,
Y.
, and
Yang,
R.-J.
, 2008, “
Application of CESE Method to Simulate Non-Fourier Heat Conduction in Finite Medium With Pulse Surface Heating,” Int. J. Heat Mass Transfer,
51(13), pp. 3525–3534.

[CrossRef]
Chou,
Y.
, and
Yang,
R.-J.
, 2009, “
Two-Dimensional Dual-Phase-Lag Thermal Behavior in Single-/Multi-Layer Structures Using CESE Method,” Int. J. Heat Mass Transfer,
52(1), pp. 239–249.

[CrossRef]
Ghazanfarian,
J.
, and
Abbassi,
A.
, 2009, “
Effect of Boundary Phonon Scattering on Dual-Phase-Lag Model to Simulate Micro-and Nano-Scale Heat Conduction,” Int. J. Heat Mass Transfer,
52(15), pp. 3706–3711.

[CrossRef]
Ghazanfarian,
J.
, and
Abbassi,
A.
, 2012, “
Investigation of 2D Transient Heat Transfer Under the Effect of Dual-Phase-Lag Model in a Nanoscale Geometry,” Int. J. Thermophys.,
33(3), pp. 552–566.

[CrossRef]
Ghazanfarian,
J.
, and
Shomali,
Z.
, 2012, “
Investigation of Dual-Phase-Lag Heat Conduction Model in a Nanoscale Metal-Oxide-Semiconductor Field-Effect Transistor,” Int. J. Heat Mass Transfer,
55(21), pp. 6231–6237.

[CrossRef]
Basirat,
H.
,
Ghazanfarian,
J.
, and
Forooghi,
P.
, 2006, “
Implementation of Dual-Phase-Lag Model at Different Knudsen Numbers Within Slab Heat Transfer,” International Conference on Modeling and Simulation (MS), Montreal, QC, Canada, May 24–26, pp. 895–899.

Dai,
W.
,
Han,
F.
, and
Sun,
Z.
, 2013, “
Accurate Numerical Method for Solving Dual-Phase-Lagging Equation With Temperature Jump Boundary Condition in Nano Heat Conduction,” Int. J. Heat Mass Transfer,
64, pp. 966–975.

[CrossRef]
Titchmarsh,
E. C.
, 1948, Introduction to the Theory of Fourier Integrals, Vol.
2,
Clarendon Press,
Oxford, UK.

Sneddon,
I. N.
, 1955, Fourier Transforms,
Courier Corporation, North Chelmsford, MA.

Barletta,
A.
, and
Zanchini,
E.
, 1995, “
Steady Periodic Heat Transfer in a Flat Plate Conductor Carrying an Alternating Electric Current,” Int. Commun. Heat Mass Transfer,
22(2), pp. 241–250.

[CrossRef]
Landau,
L. D.
, and
Lifshitz,
E. M.
, 1960, Electrodynamics of Continuous Media,
Pergamon Press,
Oxford, UK.